

Calculations and subfunctions

22/11/01 / 2022-09-01 008.384
[bookmark: _Toc118109298]Contents
Contents	2
1. Introduction	6
1.1. Examples	7
1.1.1. IF..ELSE - Conditional statements	8
1.1.2. BEGIN..END - Block statements	9
1.1.3. START/END...NEXT...REPEAT - Loops	10
1.1.4. NOT, AND, OR - Logical operators	11
1.1.5. REM, /* - Comments	12
1.1.6. GOTO Jump to label	13
1.1.6.1. ON...GOTO/GOSUB - Conditional jump / subroutinecall	14
1.1.7. GOSUB Calling subroutines	15
1.1.7.1. RETURN Returning from a subroutine	16
1.2. Fields	17
1.2.1. #xx or kk#xx - Fields from a file	18
1.2.1.1. #xx(from,to) - Part of fields	19
1.2.1.2. #xx(no) - Tabelfields	20
1.2.1.3. Conversion between numeric and textfields	21
1.2.2. SY#xx - System fields	22
1.2.2.1. #DD, #PD - Today's date and As of date	23
1.2.2.2. #PP - Pagenumber	24
1.2.2.3. #SN - System name	25
1.2.2.4. #OK - Result after reading of a file	26
1.2.2.5. #UN User name	27
1.2.2.6. #LIN linenumber and #LOF lines on form	28
1.2.2.7. #LEVEL - Current total level	29
1.2.2.8. kk#RECNO - Last used recordnumber from the file kk	30
1.2.3. WW#xx - Freefields (Workfields)	31
1.2.3.1. #Dntext - Input data	32
1.2.3.2. #Ptext - Picturefields	33
2. Aritmetic functions	34
2.1. ABS - The absolute value of a number	35
2.2. FNH - Round number - no decimals	36
2.3. FNR - Round number to 2 decimals	37
2.4. FRA - Calculate the fraction of a number	38
2.5. INT - The integer value of a number	39
2.6. NOT - Logical negation	40
2.7. POW - Raise to n'th power	41
2.8. RUN - Rounding to x decimals	42
2.9. RUND - Definition of the FNR rounding function	43
2.10. SGN - Check if number is negative, zero or positive	44
2.11. SQR - Calculate the square root of a number	45
3. String functions	46
3.1. CONV - Change characters in a text	47
3.2. EDIT - Editing of an integer figure	48
3.3. FIND - Find text in textfield	49
3.4. LEN - Length of a text	50
3.5. LOWER - Convert text to lower case characters	51
3.6. NAME - Extraction of Christian and lastname	52
3.7. NUMBER - Conversion of 'dirty' numbers	53
3.8. NUMS - Conversion of textfield to number	54
3.9. PACK - Packing of a number	55
3.10. SMAA - Convert text to upper/lower case - names	56
3.11. SOGE - Creation of a searchkey from an adress field	57
3.12. SPOFF - Remove leading and trailing blanks in text	58
3.13. UNPACK - Unpacking of a number	59
3.14. UPPER - Convert text to upper case	60
3.15. USING - Editing of number	61
4. Checkdigit and validation	62
4.1. CCODE - Field checktext (DATAMASTER checkcodetext)	63
4.2. CHECK - OCR check	64
4.3. CHEX - Modula 11 check	65
4.4. VALCH - Check if text found in the validation range	66
4.5. VALID - Check if number found in the valid numbers	67
5. Date manipulation functions	68
5.1. DATE - Current date YYYYMMDD	69
5.2. DATECALC - Calculate a date	70
5.3. DAY - Description of a date - textform	71
5.4. FNA - Convert date to number of days from year 0	72
5.5. FNB - Convert number of days from year 0 to date	73
5.6. FND - Date conversion	74
5.7. FNE - Convert date to month number	75
5.8. FNF - Convert date to daynumber, 360 days/year	76
5.9. FNO - Convert date to DDMMYY	77
5.10. FNU - Convert date to weekday	78
5.11. FNV - Convert date to weekno or weekno to date	79
5.12. FNY - Convert date to YYYYMMDD	80
5.13. MONTH - Generate text describing a month	81
5.14. TIME - Current time TTMMSS	82
5.15. WDAY - Describe weekday of date	83
5.16. WEEK - Convert date to weekno or weekno to date	84
5.17. WORKD - Calculate number of workdays between dates	85
6. Handling of multiple fields	86
6.1. LET - Calculating several fields at a time	87
6.1.1. LET - Assign values to fields between IQ programs (IQ)	88
6.1.2. LET - Creating new files (RAP)	89
6.2. CLEAR - Clear all fields in a file (RAP)	90
6.3. CLRFLAG - Clear options for fields on screen (IQ)	91
6.4. COLOR - Set background box color for a number of fields	92
6.5. COLORF - Set forground text color for a number of fields	93
6.6. DIALOG - Function for additional input	94
6.7. GETFLAG- Get options for fields on screen (IQ)	95
6.8. SETFLAG- Set options for fields on screen (IQ)	96
6.9. ZERO - Zero a number of fields	97
7. Report control	98
7.1. CHAIN - Start next report or another program (RAP)	99
7.1.1. CHAINR - Chain program or external command directly (RAP)	100
7.1.2. CHAIN - Chain IQ program or external command (IQ)	101
7.2. WAIT - Wait for program to finish (IQ)	102
7.3. COMPILE - Compile a report (RAP)	103
7.4. EXIT - Exit the report (RAP)	104
7.4.1. EXIT - Close IQ program or window (IQ)	105
7.5. KEYS - External start/stop ranges (RAP)	106
7.6. INDEX - Set index and start/stop value for report (RAP)	107
7.7. LTOT - Lowest total level (RAP)	108
7.8. MTOT - Highest total level (RAP)	109
7.9. MESS - Display message on screen	110
7.10. NOPAS - No password/username on this report (RAP)	111
7.11. PAS - Set password/username (RAP)	112
7.12. PARAMS - Function for additional report start parameters (RAP)	113
7.13. RETURN - Return from calculations	114
7.14. SORTKEY - Inserting additional sortkey (RAP)	115
7.15. SORTWORK - Using a specific sortfile (RAP)	116
7.16. WHEN - When to perform calculations (RAP)	117
8. Printer control	118
8.1. COPIES- Number of print copies (RAP)	119
8.2. PAGE - Change report layout page (RAP)	120
8.3. PRINT - Print lines from report layout (RAP)	121
8.3.1. PRINT - Print output control (RAP.)	122
8.3.2. PRINT(?= - Printer characteristics inquiry (RAP.)	123
8.4. PRINT(LAB= - Label function (RAP)	124
8.5. PRINTER- Printer selection (RAP.)	125
8.5.1. PRINTER - Multiple printer output (RAP)	126
8.6. PRTTOTAL - Manual control of total printout (RAP)	127
8.7. SCRPRT - Recall screen print (IQ)	128
9. Reading files	129
9.1. READ - Read record from file	130
9.2. READH - Read record with optional print of heading	131
9.3. READR - Read record using recordnumber	132
9.4. READX - Read record using relative recordnumber	133
9.5. START - Set index and range for a file	134
9.6. NEXT - Get next record in range	135
9.7. REPEAT - Repeat reading NEXT	136
9.8. GETKEY - Get current key value	137
9.9. END - Set end range for a file after START	138
9.10. PRIOR - Get previus record in range	139
9.11. SPEED- Optimizing read strategi	140
10. Writing to files	141
10.1. UPDATE - Allow update of files	142
10.2. REWRITE - Rewrite record in file	143
10.3. INSERT - Insert new record in file	144
10.4. DELETE - Delete a record in a file	145
10.5. WRITE - Write a record to file	146
11. Export / Import from external files	147
11.1. EXPORT - Export of data to a textfile	148
11.2. IMPORT - Import data from textfile (RAP)	150
11.2.1. IMPOCONT - Continuation of import (RAP)	151
11.2.2. IMPONEXT - Import of next record (RAP)	152
11.2.3. IMPOTHIS - Reimport this record (RAP)	153
11.3. FTP - File Transfer Processor	154
12. Multiple companies and merge of files	155
12.1. ACCESS- Check if file exists	156
12.2. COMNO - Get current company id	157
12.3. ENDSUM - Additional grande total when using more mainfiles	158
12.4. FILENAME - Current filename for an open file	159
12.5. OPEN - Open a file with a specific name	160
12.5.1. OPEN - Temporary close of files	161
12.6. MERGE - Merging of more mainfiles in one report (RAP)	162
12.7. OPCOM - Open files in different companies	163
13. IQ/DATAMASTER functions	164
13.1. DISABLE- Disable input for a program (IQ)	165
13.2. DISP - Display of changed fields (IQ)	166
13.3. DOFUNCTION - Execute external function (IQ)	167
13.4. ENABLE- Enable input for a program (IQ)	168
13.5. FOCUS - Activate program (IQ)	169
13.6. FUNC - Current update mode for a record (IQ)	170
13.7. GETINFO - Get additional program information (IQ/DM)	171
13.8. HELP - Display box with help for field (IQ)	172
13.9. ISACTIVE - Ask if program is active (IQ)	173
13.10. KEYON - Switch key input field ON/OFF (IQ)	174
13.11. LINE - Retrieve or set the current line number (IQ/DM)	175
13.12. LOOP - Call a routine for all records in the linebuffer (IQ)	176
13.13. MENUCH - Flip menu checked flag (IQ)	177
13.14. MENUS - Menu control (IQ)	178
13.15. MENUUPD - Add/Control menu (IQ)	179
13.16. NEXTFLD - Jump to input field (IQ)	180
13.17. NEXTFLDSEQ - Jump to input field in sequence (IQ)	181
13.18. OBJECTADDSTRING - Add string to object (IQ)	182
13.19. OBJECTCLEAR - Clear contents of object (IQ)	183
13.20. OBJECTGETSTRING- Get index of an objects selected item (IQ/DM)	184
13.21. PLSNEXT - Prepare and read mainfile (IQ)	185
13.22. SEQ - Change of input sequence (IQ)	186
13.23. SETUPD - Mark a file on a line for updating (IQ)	187
13.24. SHOW- Enable/Disable/Show/Hide a field (IQ/DM)	188
13.25. SUPER - Prepare superindex search (IQ)	189
13.26. TRANSMIT- Update other IQ programs (IQ)	190
13.27. TRANSSEL- Define IQ transaction selections (IQ)	191
14. SYSTEM functions	192
14.1. DEBUG- Switch on debug window (IQ)	193
14.2. EXEC- Execute text as calculation line	194
14.3. GETFLD- Set SY structure pointers (IQ)	195
14.4. INSTALL- Aktivation of external functions	196
14.5. SYSPAR - Get systemparameter	197
14.6. SYSPARSET - Set value of a systemparameter	198
14.7. USERINFO - Get information about user	199
14.8. WIF - Testprint (IQ)	200
14.9. WIF- Testprint (RAP)	201
14.10. WIFS- Testprint of fields (IQ)	202
Index	203

[bookmark: _Toc118109299]1. Introduction

The the syntax of the calculations written in RAPGEN is based on a BASIC-like language. This language allows test on field values, arithmetic statements, text processing and much more.

	
	Reserved words
	Synonym
	Description

	Conditional statements
	
	
	

	
	IF
	
	IF expression ...

	
	LET
	
	IF expression LET expression ...

	
	ELSE
	
	IF expression ... ELSE expression

	Block statements
	
	
	

	
	BEGIN
	
	start block

	
	END
	
	end block

	Control loop flow
	
	
	

	
	BREAK
	
	exit from loop

	
	CONTINUE
	
	continue loop

	Logical operators
	
	
	

	
	NOT
	
	not equal to

	
	AND
	
	and

	
	OR
	
	or

	Arithmetic operators
	
	
	

	
	+
	
	addition

	
	-
	
	subtraction

	
	*
	
	multiply

	
	/
	
	divide

	
	%
	
	percentage

	Relational operators
	
	
	

	
	=
	
	equals

	
	>
	
	greater than

	
	<
	
	less than

	
	>=
	
	greater than or equal to

	
	<=
	
	less than or equal to

	
	<>
	
	not equal to

	Comments
	
	
	

	
	REM
	
	full comment file

	
	/*
	
	comment after the statement

	Jump and subroutines
	
	
	

	
	GOTO
	
	go to label:

	
	GOSUB
	
	execute subroutine label:

	
	RETURN
	
	return from subroutine

	
	ON..GO..
	
	conditional branch

This language syntax provides you with lots of ways to write statements. We now give some examples of this:
[bookmark: _Toc118109300]1.1. Examples
[bookmark: _Toc118109301]1.1.1. IF..ELSE - Conditional statements
If supplier balance (LE#6) is over 1000 subtract 100 else add 47.
 IF LE#6 > 1000 LET LE#6 = LE#6 - 100 ELSE LET LE#6 = LE#6 + 47
[bookmark: _Toc118109302]1.1.2. BEGIN..END - Block statements
If supplier balance (LE#6) id over 1000 then start block where 100 is subtracted from the balance and line 7 is printed.
 IF LE#6 > 1000 THEN BEGIN
 LE#6 = LE#6 - 100
 PRINT(7)
 END
Which means, that all lines between BEGIN and END are performed only if the condition is true.
[bookmark: _Toc118109303]1.1.3. START/END...NEXT...REPEAT - Loops
The following loop reads all suppliers in the range 111-999. If the balance is less than 1000 the supplier is not processed.
 START(LE),"111"
 END(LE),"999"
 NEXT(LE)
 IF LE#6 < 1000 CONTINUE /* skip suppliers with a balance < 1000
 REM *** process suppliers ***
 REPEAT(LE)
The following loop reads all suppliers in the range 111-999. When a balance greater than 10000 is met the loop is ended.
 START(LE),"111"
 END(LE),"999"
 NEXT(LE)
 IF LE#6 > 10000 BREAK /* break loop if balance > 10000
 REPEAT(LE)
 IF LE#6 > 10000 /* supllier found with balance > 10000
[bookmark: _Toc118109304]1.1.4. NOT, AND, OR - Logical operators
 IF NOT VA#5 LET VA#5=#DD /* date last purchase is set to todays date
If date last purchase equals 0 the purchase date is set to todays date. This statements equals
 IF VA#5=0 LET VA#5=#DD
If costprice not equal to 0 and date last purchase not equal to 0, then print line 5 on the report.
 IF VA#4<>0 AND VA#5<>0 PRINT(5) /* if cost and date set print line
If costprice not equal to 0 OR date last purchase not equal to 0, then print line 5 on the report.
 IF VA#4<> OR VA#5<>0 PRINT(5) /* if cost or date not equals 0 print line 5
[bookmark: _Toc118109305]1.1.5. REM, /* - Comments
 REM *** this report is developed by SW-Tools ApS ***
 REM *** date. 07.09.1997
 IF LE#6 > 1000 LET LE#6 = LE#6 - 100 /* Ajust the balance
[bookmark: _Toc118109306]1.1.6. GOTO Jump to label
Using the GOTO statement you can jump in the calculations usually dependent on the value of a field. A label defined as 'NAME:' decides where to jump to. In the example below line 7 is printed three times.
 #30 = 0 /* Zero counter
 AGAIN: /* Label for later jump
 PRINT(7) /* Do something
 #30 = #30 + 1 /* Count
 IF #30 < 3 GOTO AGAIN /* Do it three times
[bookmark: _Toc118109307]1.1.6.1. ON...GOTO/GOSUB - Conditional jump / subroutinecall
Conditioanl jump to a label or calling a subroutine dependent on the value in a field can be done using ON. ON may be used both with GOTO and GOSUB.
 #30 = 0
 ON #7 GOTO ONE,TWO,ONE
 #30 = #30 + 1 /* #30 becomes 3 if field 7 not equals 1,2 or 3
 TWO: #30 = #30 + 1 /* #30 becomes 2 if field 7 equals 2
 ONE: #30 = #30 + 1 /* #30 becomes 1 if field 7 equals 1 or 3
[bookmark: _Toc118109308]1.1.7. GOSUB Calling subroutines
If the same calculations are to be done several times you may write these lines as a subroutine starting with a 'label:' and called with GOSUB
 #30 = 0 /* Zero counter
 GOSUB DOIT /* Call the routine
 GOSUB DOIT /* Call the routine again
 RETURN /* End the normal calculations
 DOIT: #30 = #30 + 1 /* Routine DOIT, count up field 30
 PRINT(7) /* And print line 7
 RETURN /* Return from the subroutine
[bookmark: _Toc118109309]1.1.7.1. RETURN Returning from a subroutine
A subroutine is ended with RETURN whereafter the calculations will be continued from where the call took place. Also refer to the RETURN function descriped later where a value may be returned from the calculations.
[bookmark: _Toc118109310]1.2. Fields
[bookmark: _Toc118109311]1.2.1. #xx or kk#xx - Fields from a file
You can refer to a field from a file as:
 #xx = fieldnumber xx from the mainfile
 kk#xx = fieldnumber xx from the file kk
Note that kk, KK, Kk and kK references different records from a file, you should normaly use the lowercase kk.
[bookmark: _Toc118109312]1.2.1.1. #xx(from,to) - Part of fields
Part of fields are written as kk#xx(from,to) and you may use this syntax for both numeric and alphanumeric fields.
 #30 = #2(3,4) /* Field 30 becomes character 3 thru 4 of field 2
For alphanumeric textfields and only for these you may also assign a value to a part of a field:
 #2="Sorenco and Son Ltd."
 #2(9,15)="xx" /* Field 2 becomes "Sorenco xx Ltd."
[bookmark: _Toc118109313]1.2.1.2. #xx(no) - Tabelfields
Tabelfields are referred as kk#xx(no) where no is in the range 0 until max.
A field may be defined as a table field in the data dictionary if the format contains eg. 20(003) specifying 3 extra elements in the table or it may just be a set of contigous fields with the same format which you would whish to use as a tabel in the calculations. Note that the freefields may also be defined as tabelfields with the format specification.
An example of this is the demo-supplier file where the name block #2, #3 and #4 also can be used as a table as #2(0), #2(1) and #2(2)
 #30 = #2(#31) /* Freefield 31 specifies name line 0,1 or 2
 PRINT(7) /* Which is printed
 #2(#31)="xx" /* And set to "xx"
Note that crytical values may occur if you exeeds the maximum of a table eg. by using #2(4)
[bookmark: _Toc118109314]1.2.1.3. Conversion between numeric and textfields
You may just set a numericfield = a textfield as #30 = #2 to convert to numeric and calculated with the numeric value. The functions NUMBER and NUMS may be used for more advanced conversions, see these.
In case of a textfield = a numericfield as #2 = #30 the result will be a textstring of variable length dependent the number as "123". Normally #2 = #30 USING "#####" is used to specify the layout of the resulting textfield, see the USING function.
[bookmark: _Toc118109315]1.2.2. SY#xx - System fields
System fields are special fields defined in the pseudofile SY which will always be present. A few of the system fields are descriped in the following, for a complete list see your actual SY file definition.
A system field is referred either by number SY#1 or by shortname #DD as stated in the first part of the fieldname. Some of the system fields are associated to a file and must be given as kk#shortname as kk#RECNO
[bookmark: _Toc118109316]1.2.2.1. #DD, #PD - Today's date and As of date
Entered at the beginning of a report, (99.99.99).
[bookmark: _Toc118109317]1.2.2.2. #PP - Pagenumber
Is automatically assigned during page shift, (9999).
[bookmark: _Toc118109318]1.2.2.3. #SN - System name
May be used if RAPGEN is installed with multiple systems e.g. different companies/files sets. Also note the fields #SU containing subsystem name and #CN with company name.
[bookmark: _Toc118109319]1.2.2.4. #OK - Result after reading of a file
After reading of a file you may use #OK, This field will be 0 if a record was read, anything else indicates error.
[bookmark: _Toc118109320]1.2.2.5. #UN User name
You may use #UN to get the user name for this PC entered by the LICENSE module.
[bookmark: _Toc118109321]1.2.2.6. #LIN linenumber and #LOF lines on form
#LIN contains the current printline, #LOF the actual number of lines on form.
[bookmark: _Toc118109322]1.2.2.7. #LEVEL - Current total level
With #LEVEL you may control calculations / print dependent of the subtotal level, see the RAPGEN user manual.
[bookmark: _Toc118109323]1.2.2.8. kk#RECNO - Last used recordnumber from the file kk
If the used database system is connected with recordnumbers the last used for file kk can be found in kk#RECNO. Also note the fields kk#NUMBER containing relative recordnumber and kk#FILENAME
[bookmark: _Toc118109324]1.2.3. WW#xx - Freefields (Workfields)
A program will be creation be assigned 40 workfields which must be defined when first time used and which may later be changed by doubleclick on the field.
The fieldnumbers will be shown as a continuation of the fields in the mainfile but the fields are actually stored as WW#1,WW#2,... whereby a later change of the number of fields in the mainfile causes automatic renumber of the free fields in all programs.
The number of freefields may be ajusted in IQ/DATAMASTER with the programparameter function, in RAPGEN by in the calculations just using a higher number than shown in the listbox which causes the number of freefields to be extended automatically.
[bookmark: _Toc118109325]1.2.3.1. #Dntext - Input data
In RAPGEN a freefieldname beginning with #Dn defines input field 1 to 7 to be entered by start of the report.
[bookmark: _Toc118109326]1.2.3.2. #Ptext - Picturefields
A freefieldname beginning with #P and defined as textfield is a reference to a picture.
[bookmark: _Toc118109327]2. Aritmetic functions

This section describes functions for numeric calculations such as rounding and power.
[bookmark: _Toc118109328]2.1. ABS - The absolute value of a number
number ABS(number par1)
Parameters: par1 : number to be converted to an absolute value
Description: The function returns the absolute value of the parameter par1. Eg. the positive value without sign.
Returnvalue: The positive value.
See also: SGN
Example: #1 = ABS(-123.45) /* Field #1 contains the value 123.45
[bookmark: _Toc118109329]2.2. FNH - Round number - no decimals
number FNH(number par1)
Parameters: par1 : defines a number (with decimals)
Description: The function is used to round a number with decimals to a number without decimals.
Returnvalue: The number without decimals.
See also: FNR, RUN
Example: #1 = FNH(1234.56) /* Field #1 contains the value 1235
[bookmark: _Toc118109330]2.3. FNR - Round number to 2 decimals
number FNR(number par1)
Parameters: par1 : defines a number (with decimals)
Description: The function is used to round a number with more than 2 decimals to a number with only 2 decimals. RAPGEN always round a result to the number of decimal digits given in the field format. You can override this by calling functions as FNH/FNR.
The rounding may be controlled by use of the RUND funktion. This defines:

Returnvalue: The rounded number.
See also: FNH, RUN, RUND
Example: #1 = FNR(123.456) /* Field #1 contains the value 123.46
[bookmark: _Toc118109331]2.4. FRA - Calculate the fraction of a number
number FRA(number par1)
Parameters: par1 : the number (with decimals)
Description: The function separates the fractional value from a number and returns it.
Returnvalue: The fraction as 0.<fractional value>.
See also: FNH, FNR, RUN
Example: #1=FRA(123.456) /* gives 0.456 , #1=FRA(-12.345) /* gives -0.345
[bookmark: _Toc118109332]2.5. INT - The integer value of a number
number INT(number par1)
Parameters: par1 : defines a number
Description: The function returns the integer value, it is the nearest lower value without decimals.
Returnvalue: The integer value.
See also: FRA
Example: #1=INT(1234.56) /* gives 1234 , #1=INT(-12.34) /* gives -13
[bookmark: _Toc118109333]2.6. NOT - Logical negation
number NOT(number par1)
Parameters: par1 : defines a number
Description: The function returns 1 if par1 equals zero, 0 if par1 is unequal to zero.
Returnvalue: 0 or 1.
See also: SGN
Example: NOT(1) is 0
[bookmark: _Toc118109334]2.7. POW - Raise to n'th power
number POW(number par1, number par2)

par2 : defines the exponent
Description: The function raises a number par1 to the par2 power.
Returnvalue: The n'th power.
See also: SQR
Example: #1=POW(8,3) /* gives 512 (8*8*8) , #1=POW(4,0.5) /* gives 2
[bookmark: _Toc118109335]2.8. RUN - Rounding to x decimals
number RUN(number par1, number par2)

par2 : No of decimals to round to
Description: The RUN function rounds the given figure to the given number of decimals.
Returnvalue: The rounded figure.
See also: FNH, FNR, INT
Example: #1=RUN(-123.4567,3) /* Field 1 becomes the value -123.457
[bookmark: _Toc118109336]2.9. RUND - Definition of the FNR rounding function
number RUND(number par1, number par2)

par2 : The number of decimals to round TO, eg. 2
Description: The RUND function defines how the FNR function is doing the rounding. If par1 is positive FNR will round UP, if par1 is negative FNR will round DOWN.
Returnvalue: None.
See also: FNR
Example:
 RUND(-25,2) /* Round DOWN to nearest 25 pence with 2 decimals
 RUND(5,2) /* Round UP to nearest 5 pence
 RUND(1,3) /* Round to 3 decimals
 RUND(1,2) /* FNR function will work as default
[bookmark: _Toc118109337]2.10. SGN - Check if number is negative, zero or positive
number SGN(number par1)
Parameters: par1 : defines a number
Description: The function examines if the number is negative, zero or positive.
Returnvalue:
 -1 The number is negative
 0 The number is zero
 1 The number is positive

See also: INT, NOT
Example: #1=SGN(-123.45) /* Field #1 then contains the value -1.
[bookmark: _Toc118109338]2.11. SQR - Calculate the square root of a number
number SQR(number par1)
Parameters: par1 : the number to take the square root of
Description: The function calculates the square root of the number in par1.
Returnvalue: The square root.
See also: POW
Example: #1=SQR(4) /* Gives 2
[bookmark: _Toc118109339]3. String functions

This section describes functions for conversion of textfields and for converting numeric fields into strings.
[bookmark: _Toc118109340]3.1. CONV - Change characters in a text
text CONV(text par1, text par2, text par3)

par3 : the new characters to be inserted
Description: The function tests each character in the text par1. If the character equals one of those in par2, it will be changed with the new character in par3. If parameter 1 contains "abc" and parameter 2 the text "ABC", the function will replace a with A, b with B and c with C.
Returnvalue: The text where the requested characters are converted.
See also: LOWER, SMAA, UPPER
Example: #1 = CONV("hans", "hn", "lr") /* Gives "lars"
[bookmark: _Toc118109341]3.2. EDIT - Editing of an integer figure
text EDIT(number par1, text par2)

par2 : USING mask for editing
Description: The EDIT function converts an integer figure to a textfield. The USING mask determins the layout of the text.
Returnvalue: The edited textfield.
See also: NUMBER, USING
Example:
 #1 = EDIT(-123,"&&&,&&") /* Returns "001,23"
 #1 = EDIT(123,"##&-#&&&") /* Returns " 0- 123"
 #1 = EDIT(123,"eg.# and ##") /* Returns "eg.1 and 23"
[bookmark: _Toc118109342]3.3. FIND - Find text in textfield
number FIND(text par1, text par2, number par3, number par4, number par5)

Description: The function search for the text par1 in the text par2. Both parameters has to be given in "" (quotes).
Returnvalue: Returns -1 if the text is not found, otherwise a positive number equal to the position where the text was found (origin 1).
See also:
Example:
 #1 = "This is a text"
 #2 = FIND("te", #1) /* Field #2 contains the value 11.
[bookmark: _Toc118109343]3.4. LEN - Length of a text
number LEN(text par1)
Parameters: par1 : defines a text
Description: The function calculates the length of a text.
Returnvalue: The length of the text.
See also: SPOFF
Example:
 #1 = "SW-Tools ApS"
 #2 = LEN(#1) /* returns the length of the text
Field #2 then contains the value 12, because there are 12 characters in #1.
[bookmark: _Toc118109344]3.5. LOWER - Convert text to lower case characters
text LOWER(text par1)
Parameters: par1 : defines a text to be converted
Description: The function converts a text to small letters, eg. all letters A-Z are converted to a-z.
Returnvalue: The converted text.
See also: CONV, SMAA, UPPER
Example:
 #1 = "THIS is a TEST"
 #2 = LOWER(#1) /* Field #2 then contains the text "this is a test"
[bookmark: _Toc118109345]3.6. NAME - Extraction of Christian and lastname
text NAME(text par1, number par2)

Description: The function extracts best possible Christianname and Lastname from the given sourcename and returns the name as specified by par2. This value may be used for sorting.
The SSV textfile WORDS.ENG is used for this. Each line contains a specialword as Mr., Miss, Mrs and their eventual replacements (Mister;Mr.)
Returnvalue: The name as specified by par2.
See also: SMAA, SOGE
Example:
 #1 = NAME("MR CHRIS HANSON",0) /* Gives "HANSON, CHRIS Mr."
 #1 = NAME("OLSEN, MICHAEL",1) /* Gives "MICHAEL OLSEN"
[bookmark: _Toc118109346]3.7. NUMBER - Conversion of 'dirty' numbers
number NUMBER(text par1)
Parameters: par1 : A text contaning a number
Description: The NUMBER function extracts a value from a textfield without looking at any charecters not being digits.
Returnvalue: The extracted integer figure, no decimals are returned.
See also: EDIT, NUMS, USING
Example:
 #1=NUMBER("33)33 05 56") /* Covert phonenumber to value 33330556
 #1=NUMBER("31/03-1997") /* A date is converted to the value 31031997
 #1=NUMBER("ab1cd2&3.4") /* Returns 1234
[bookmark: _Toc118109347]3.8. NUMS - Conversion of textfield to number
number NUMS(text par1)
Parameters: par1 : A text contaning a number
Description: On a line containing #1=#2 where #1 is numeric and #2 is a textfield, any number in field 2 will be converted automatically. Same result could be reached using #1=NUMS(#2) but NUMS is optional.
However if you in such a line wants to calculate directly on the field values NUMS must be used to exactly specify the conversion as in: #1=NUMS(#2)+NUMS(#3)
Returnvalue: The numeric value of the textfield. Decimal point must be stated as . (point)
See also: NUMBER
Example: #1 = NUMS("aa111") + NUMS("222,22 test") + NUMS("333.33")
Field 1 becomes the sum of the numbers contained in the textfields = 555.33
[bookmark: _Toc118109348]3.9. PACK - Packing of a number
text PACK(text par1, number par2)

par2 : 0, not used, reserved for future packtype
Description: 8870 - basic call 60,A$,B$ is the same as B$=PACK(A$)
Returnvalue: The packed value of the field.
See also: UNPACK
Example: #1=PACK(#2) /* #1 becomes the packed value of #2
[bookmark: _Toc118109349]3.10. SMAA - Convert text to upper/lower case - names
text SMAA(text par1)
Parameters: par1 : the text to be converted
Description: The function converts the text in par1 to upper and lower case letters. Eg. the first letter in each word will be set to upper case while the rest is set to lower case letters. The SSV file WORDS.ENG will be checked for occurence of the first and last word in the text. If found the spelling of this will be taken from here.
Note that the SMAA function may be used in DATAMASTER also for online conversion of name input fields.
Returnvalue: The converted text.
See also: CONV, LOWER, NAME, UPPER
Example:
 #1 = SMAA("MICHAEL OLSEN") /* Gives "Michael Olsen"
 #1 = SMAA("SORENCO GMBH") /* Gives "Sorenco GmbH"
[bookmark: _Toc118109350]3.11. SOGE - Creation of a searchkey from an adress field
text SOGE(text par1, number par2)

par2 : The length of the resulting namepart.
Description: The streetname and streetnumber is isolated from the given adress field. These are then combined into a searchkey where the streetname is of fixed length par2 followed by the street number. This field may be used for sorting or searching.
Returnvalue: The streetname length par2 followed by 4 digit street number.
See also: LOWER, NAME, SMAA, UPPER
Example:
 #1 = SOGE("MAIN STREET 3",12) /* Gives "MAINSTREET_____3"
 #1 = SOGE("27, Rue de Saute",8) /* Gives "RuedeSau__27"
[bookmark: _Toc118109351]3.12. SPOFF - Remove leading and trailing blanks in text
text SPOFF(text par1, Bitflag par2)

Description: The function removes all leading and trailing blanks. Furthermore it reduces all blank positions to a maximum of only one blank character.
Returnvalue: The converted text.
See also: LEN
Example:
 #1=" This is a text "
 #2=SPOFF(#1) Field #2 then contains the value "This is a text".
[bookmark: _Toc118109352]3.13. UNPACK - Unpacking of a number
text UNPACK(text par1, number par2)

par2 : 0, not used, reserved for future packtype
Description: 8870 - basic call 61,A$,B$ is the same as B$=UNPACK(A$)
Returnvalue: The unpacked value of the field.
See also: PACK
Example: #1=UNPACK(#2) /* #1 becomes the unpacked value of #2
[bookmark: _Toc118109353]3.14. UPPER - Convert text to upper case
text UPPER(text par1)
Parameters: par1 : defines a text to be converted
Description: The function converts a text to upper case, eg. all letters a-z are converted to A-Z.
Returnvalue: The converted text.
See also: CONV, LOWER, SMAA
Example:
 #1="This is a test"
 #2=UPPER(#1) /* Field #2 then contains the text "THIS IS A TEST"
[bookmark: _Toc118109354]3.15. USING - Editing of number
text USING(number par1, text par2)

par2 : USING mask for editing
Description: The USING function converts a number to a textfield. The USING mask determins the layout of the text.
The function may be called with the special BASIC syntax also as: textfield = number USING "mask"
Returnvalue: The edited textfield.
See also: EDIT
Example:
 #1 = USING(-123,"&&&,&&") /* Gives "001,23"
 #1 = USING(123.45,"#####") /* Gives "__123"
 #1 = USING(1234.56,"###,###.##") /* Gives "__1,234,56"
 #1 = 123.45 USING "#####" /* Gives "__123"
[bookmark: _Toc118109355]4. Checkdigit and validation

This section describes functions for checkdigit calculation and validation of text and numbers.
[bookmark: _Toc118109356]4.1. CCODE - Field checktext (DATAMASTER checkcodetext)
text CCODE(text par1, field par2)

par2 : Fieldnumber with check defined as "7", "#7", "va#7", "va07"
Description: The function reads the field definition from the Data Dictionary for the given field par2 and finds the checkcodes defined for this. The text connected with the value given in par1 is returned.
Returnvalue: The checktext. Blank indicates not allowed, "-" no check defined.
See also: VALID, VALCH
Example: #1 = CCODE(9,"va#7") /* Gives "Special"
[bookmark: _Toc118109357]4.2. CHECK - OCR check
text CHECK(text par1)
Parameters: par1 : is a number as customer number
Description: The function processes a number and returns a text containing an OCR checkvalue.
#47=CHECK (#19) will calculate the OCR checkdigit modulus 10 with weights 212121... for the textfield #19 and ads this as the last digit.
CHECK("123456789012345") returns a text with one character added: "1234567890123452".
Returnvalue: The text plus the OCR checkdigit.
See also: CHEX
Example: #1 = CHECK("33330556") /* Gives "333305563"
[bookmark: _Toc118109358]4.3. CHEX - Modula 11 check
text CHEX(text par1, text par1)

par2 : Weigths for calculating the checkdigit, 2 digits for each input character
Description: #47=CHEX (#15,"01020304") will as CHECK calculate a checkdigit and add this on the return field.
The checkdigit is calculated using modulus 11 with the weights 01, 02, 03, 04 according to the second parameter. Each set of 2-digits in this parameter gives the weight for one digit in the parameter 1 field.
Returnvalue: The text plus the checkdigit.
See also: CHECK
Example: #2=CHEX("330556", "010203040506") /* Gives "3305569"
[bookmark: _Toc118109359]4.4. VALCH - Check if text found in the validation range
number VALCH(text par1, text par2)

par2 : the allowed values separated with comma
Description: The function validates par1 found among the values given in par2. All values given in par2 has to be separated with , (comma).
Returnvalue: Returns 0 if par1 not found in par2.
See also: CCODE, VALID
Example: #1=VALCH("Chris", "Anne,Nette,Chris,Ole,Michael") /* #1 then contains the value 2.
[bookmark: _Toc118109360]4.5. VALID - Check if number found in the valid numbers
number VALID(number par1, number par2, number par3)

. Description: The function validates if the value in par1 is allowed by checking the allowed values in par2. The syntax for par2 is:
"1,2,8-10,12" It is the values 1, 2, 8 to 10 and 12 are allowed.
"-1,2,8-10,12" If a minus is the first character the values are NOT allowed.
 #20="1-3,8-12"
 VALID(15,#20,1)
will change the value of the range field #20 by inserting 15 so #20 becomes: "1-3,8-12,15"
Returnvalue: Returns 0 if par1 not found in par2.
See also: CCODE, VALCH
Example: #1 = VALID(9, "1,2,8-10,12")
Field #1 then contains the value 3 as the value is found inside the third range.
[bookmark: _Toc118109361]5. Date manipulation functions

Date calculation is a sience for itself and is descriped in this chapter.
[bookmark: _Toc118109362]5.1. DATE - Current date YYYYMMDD
number DATE()
Returnvalue: The current date as YYYYMMDD.
[bookmark: _Toc118109363]5.2. DATECALC - Calculate a date
Date DATECALC(Date par1, number par2, number par3, number par4, number par5)

par5 : day(s) DD
Description: The function can is used to at set a date, or add to/subtract from a date. If par2 is set to 0 a date can be set using the parameters par3-par5. If parameter 3, 4 and 5 are set, the parameter 1 will be ignored. To set the month only, the function uses the the date in par1 and changes the month to the one in par4.

Returnvalue: The calculated date as YYYYMMDD.
See also: DAY, FNA, FNB, FND, FNU, FNV, FNY,MONTH, WDAY, WORKD
Example:
 #1=DATECALC(0, 0, 1997, 10, 16) /* set the date 16.october 1997 (19971016)
 #1=DATECALC(19970101, 1, 0, 2, 0) /* add 2 months to the date (19970301)
 #1=DATECALC(19971016, 2, 1, 2, 3) /* subtract 1 year, 2 months and
 3 days from the date (19960813)
[bookmark: _Toc118109364]5.3. DAY - Description of a date - textform
text DAY(Date par1)
Parameters: par1 : a date as YYYYMMDD
Description: The function creates a text with the date as: <?> <weekday> the. <day> <month> <year>
If the day is a 'free-day' the first character will be a *, if only a 'half free-day' a /, otherwise blank. The same calender as descriped for WORKD is used.
Returnvalue: Returns a text.
See also: DATECALC, FNA, FNB, FND, FNU, FNV, MONTH, WDAY, WORKD
Example: #1 = DAY(19931016) /* create text for 16. october 1993
Field #1 contains the value "*Saturday The 16 october 1993"
[bookmark: _Toc118109365]5.4. FNA - Convert date to number of days from year 0
number FNA(Date par1, number par2)

Description: The function calculates the given date to the number of days since the year 0. This value can be used to add or subtract days or to calculate the difference between dates.
Returnvalue: The number of days since the year 0.
See also: FNB, FND, FNU, FNV, DATECALC, DAY, MONTH, WDAY, WORKD
Example:
 #1 = 19931215 /* the date 15. december 1993
 #2 = FNA(#1) /* how many days since 0 ?
 #3 = #2 - FNA(19931202) /* how many days since 2. december ?
Field #2 contains the value 728277 and field #3 the value 13
[bookmark: _Toc118109366]5.5. FNB - Convert number of days from year 0 to date
Date FNB(number par1, number par2)

Description: The function calculates a date YYYYMMDD on basis of a value. Eg. a number returned from the function FNA() can be parsed as parameter to this function and hereby return a valid date.
Returnvalue: Returns the value as a date YYYYMMDD.
See also: DATECALC, DAY, FNA, FND, FNU, FNV, MONTH, WDAY, WORKD
Example:
 #1 = FNA(19931215) /* convert the date 15. december 1993
 #2 = FNB(#1 + 9) /* add 9 days and convert to date YYYYMMDD
Field #2 contains the value 19931224, eg. 24. december 1993
[bookmark: _Toc118109367]5.6. FND - Date conversion
Date FND(Date par1)
Parameters: par1 : defines a date as YYYYMMDD
Description: This function may be used to convert dates from one format to another, and is normally used with sorting and selections. Ex.
970101 is greater than 961231 but 311296 is greater than 010197
You can see the need for using the FND function if you try similar comparisons with a datefield defined DDMMYY.
Returnvalue: Returns the value as a date YYMMDD or DDMMYY.
See also: DATECALC, DAY, FNA, FNO, FNU, FNV, FNY, MONTH, WDAY, WORKD
Example:
 #1 = FND(310395) /* Gives 950331
 #1 = FND(950331) /* Gives 310395
 #1 = FND(19950331) /* Gives 310395
[bookmark: _Toc118109368]5.7. FNE - Convert date to month number
number FNE(Date par1)
Parameters: par1 : A date as YYYYMMDD or YYMMDD
Description: This function may be used to calculate date differences in months.
Returnvalue: The function calculates the month number as Year*12 + Month (YY*12+MM)
See also: DATECALC, DAY, FNA, FNB, FND, FNV, MONTH, WDAY, WORKD
Example: #1 = FNE(19950331) /* gives 1143 = 95*12+03
[bookmark: _Toc118109369]5.8. FNF - Convert date to daynumber, 360 days/year
number FNF(Date par1)
Parameters: par1 : A date as YYYYMMDD or YYMMDD
Description: This function calculates the daynumber from year 0 using 360 days/year. Same as FNA(date,360)
Returnvalue: Number of days from year 0.
See also: FNA
Example:
 #1 = FNF(19950331) /* gives 1718290
 #1 = FNF(950331) /* gives 34290
[bookmark: _Toc118109370]5.9. FNO - Convert date to DDMMYY
Date FNO(Date par1)
Parameters: par1 : Date given as DDMMYY, YYMMDD or YYYYMMDD
Description: Nomatter how the input date is turned the date will be returned as DDMMYY. This can then be used in subsequent printouts.
Returnvalue: DDMMYY
See also: FND, FNY
Example:
 #1 = FNY(310395) /* Returns 310395
 #1 = FNY(950331) /* Returns 310395
 #1 = FNY(19950331) /* Returns 310395
[bookmark: _Toc118109371]5.10. FNU - Convert date to weekday
number FNU(Date par1)
Parameters: par1 : defines a date as YYYYMMDD
Description: The function is used to at calculate the weekday of a date.

See also: DATECALC, DAY, FNA, FNB, FND, FNV, MONTH, WDAY, WORKD
Example: #1 = FNU(19931215) /* which day is 15. december 1993 ?
Field #1 contains the value 4 (=Wednesday)
[bookmark: _Toc118109372]5.11. FNV - Convert date to weekno or weekno to date
number FNV(number par1)
Parameters: par1 : defines a date as YYYYMMDD, or a weeknumber as YYYYWW
Description: The function converts a date to a weeknumber YYYYWW, if par1 is a date. If par1 on the other hand is a weeknumber YYYYWW the function will return a date equal to the last sunday before the given week. Same as WEEK(date)
Returnvalue: Returns a number YYYYWW, where YYYY = year and WW = ugenr, or a date YYYYMMDD.
See also: DATECALC, DAY, FNA, FNB, FND, FNU, MONTH, WDAY, WEEK, WORKD
Example:
 #1 = FNV(19931016) /* calculate weeknumber of the date 16. oktober 1993
 #2 = FNV(#1) /* calculate the last sunday before weeknumber 41
Field #1 then contains the value 199341, equal to weeknumber 41. Field #2 contains the date 19931010.
[bookmark: _Toc118109373]5.12. FNY - Convert date to YYYYMMDD
Date FNY(Date par1)
Parameters: par1 : Date given as DDMMYY, YYMMDD or YYYYMMDD
Description: Nomatter how the input date is turned the date will be returned as YYYYMMDD. This can then be used in subsequent calculations.
Returnvalue: YYYYMMDD
See also: FND, FNO
Example:
 #1 = FNY(310395) /* Returns 19950331
 #1 = FNY(950331) /* Returns 19950331
 #1 = FNY(19950331) /* Returns 19950331
[bookmark: _Toc118109374]5.13. MONTH - Generate text describing a month
text MONTH(Date par1)
Parameters: par1 : defines a date as YYYYMMDD
Description: The function generates a text equal to the name of the requested month.
Returnvalue: Returns the name of the month.
See also: DATECALC, DAY, FNA, FNB, FND, FNU, FNV, WDAY, WORKD
Example: #1 = MONTH(19931016) /* date is 16. oktober 1993
Field #1 then contains the value "october".
[bookmark: _Toc118109375]5.14. TIME - Current time TTMMSS
number TIME()
Returnvalue: The current time as TTMMSS.
[bookmark: _Toc118109376]5.15. WDAY - Describe weekday of date
text WDAY(Date par1)
Parameters: par1 : defines a date as YYYYMMDD
Description: The function generates a text as: <?> weekday
If the day is a free-day the first character will be a * and is it a / if only a half free-day. Otherwise blank. The same calender as descriped for WORKD is used.
Returnvalue: A text with the day.
See also: DATECALC, FNA, FNB, FND, FNU, FNV, MONTH, WDAY, WORKD
Example: #1 = WDAY(19931016) /* Field #1 contains the value "*Saturday"
[bookmark: _Toc118109377]5.16. WEEK - Convert date to weekno or weekno to date
number WEEK(number par1)
Parameters: par1 : defines a date as YYYYMMDD, or a weeknumber as YYYYWW
Description: The function converts a date to a weeknumber YYYYWW, if par1 is a date. If par1 on the other hand is a weeknumber YYYYWW the function will return a date equal to the last sunday before the given week. Same as FNV(date)
Returnvalue: Returns a number YYYYWW, where YYYY = year and WW = ugenr, or a date YYYYMMDD.
See also: FNV
Example:
 #1 = WEEK(19931016) /* calculate weeknumber of the date 16. oktober 1993
 #2 = WEEK(#1) /* calculate the last sunday before weeknumber 41
Field #1 then contains the value 199341, equal to weeknumber 41. Field #2 contains the date 19931010.
[bookmark: _Toc118109378]5.17. WORKD - Calculate number of workdays between dates
number WORKD(Date par1, Date par2)

par2 : defines a date as YYYYMMDD
Description: The function calculates the number of workdays between two dates.
#47 = WORKD (#15,#PD) calculates the number of actual workdays from the date in field 15 to the date entered in 'As of date'.
The function starts by calculating the number of days between the two dates. All Saturdays and Sundays will then be subtracted. As the final step the functions searches a 'workday tablefile', where holidays are listed, and then subtracts a full or half day per day found.
This tablefile can if necessary be adjusted individually. The function uses the file RAPDAY.ENG. This file is a SSV tekstfile where each line contains a holyday as YYYYMMDD. For half holidays follows the percentage of freedom as eg. 19960630;50
Returnvalue: Returns the number of workdays between to dates.
See also: DATECALC, FNA, FNB, FND, FNU, FNV, MONTH, WDAY, WORKD
Example: #1 = WORKD(19930420, 19930430) /* Field #1 then contains the value 19.
[bookmark: _Toc118109379]6. Handling of multiple fields

This chapter decripes functions for handling a bunch of fields, especially the LET function.
[bookmark: _Toc118109380]6.1. LET - Calculating several fields at a time
number LET(fields par1)
Parameters: par1 : defines one or more fields
Description: The function is used to at calculate one or more fields using one statement. The fields can calculated with the expression fields XX constant/field, where XX may be

	
	Operator
	Meaning

	
	=
	set fields equal to

	
	+=
	add value to the fields

	
	-=
	subtract value from the fields

	
	*=
	multiply fields with the value

	
	/=
	divide fields with the value

	
	%=
	set fields to the mod. value from the division

	
	&=
	perform logical and operation on fields

	
	|=
	perform logical or operation on fields

Returnvalue: Returns 0 if the calculation was successful.
See also: CLEAR, ZERO
Example:

	
	Letexpression
	Function

	
	LET("#1-10=12")
	Field 1 to 10 is set equal to 12

	
	LET("#20,25=3,7")
	#20=3 and #25=7

	
	LET("#20-25=le#1-10")
	Field 20-25 is set to the file le field 1-6

	
	LET("#20-25=le#1-2")
	#20=#22=#24=le#1, #21=#23=#25=le#2

	
	LET("le#1,3,va#7=#1,ku#3")
	Several files may be mixed

	
	LET("#20-25+=1")
	Add 1 to all the fields 20-25

[bookmark: _Toc118109381]6.1.1. LET - Assign values to fields between IQ programs (IQ)
number LET(fields par1)
Parameters: par1 : defines one or more fields
Description: The LET assignment of multiple fields has been extended to work with multiprograms and between lines in list/transaction programs.
Returnvalue: Returns 0 if the calculation was successful.
See also:
Example:

	
	Letexpression
	Function

	
	LET (20.#1-3=#1-3)
	Sets field 1-3 for program 20 = this program #1-3

	
	LET (#1-3=20.#4-6)
	Sets field 1-3 in this program to #4-6 from program 20

	
	LET (#10=#3.4)
	Sets field 10 equal to field 3 from line 4

[bookmark: _Toc118109382]6.1.2. LET - Creating new files (RAP)
number LET(fields par1)
Parameters: par1 : defines one or more fields
Description: The LET function may be used to build new files.
Returnvalue: Returns 0 if the calculation was successful.
See also: INSERT, UPDATE, Rapgen Manual
Example:

	
	Letexpression
	Function

	
	LET (aa=#1-3,87,le#2)
	Define file aa, key=aa#1, type=1.database driver

	
	LET (aa=#1-3,6K,15D)
	Keys aa#4 and aa#5 (duplicates)

	
	LET (aa=#1-3,6,15:2,NP)
	Keys aa#2 and rel.recno (duplicates)

	
	LET (aa=#1-3),12000
	12000 records (default is 1000 if needed)

	
	LET (aa=#1-3),-1
	File should be builded eachtime

	
	LET (aa=#1-3),1000,xnet
	File is a XNET file

	
	LET (aa=#1-3) -acc
	File is an access file, build always

	
	LET (07/aa=#1-3),25
	Lu may be given for basic files

[bookmark: _Toc118109383]6.2. CLEAR - Clear all fields in a file (RAP)
number CLEAR(file par1)
Parameters: par1 : the shortname of the file
Description: The function sets all fields for a file to zero.
Returnvalue: Returns 0 if ok.
See also: ZERO
Example:
 UPDATE(1) /* the report updates the file
 CLEAR(VA) /* zero all fields from article file
 VA#1 = "1234" /* article number
 INSERT(VA) /* insert new record in article file
The example inserts a new record in the article file. Due to the function CLEAR() all other fields than the article number are set to zero.
[bookmark: _Toc118109384]6.3. CLRFLAG - Clear options for fields on screen (IQ)
CLRFLAG(fields par1, number par2, number par3)

Description: Each screenfield is associated with parameters (bits) defining the use. The SETFLAG function may be used to set these flags, CLRFLAG to clear them.
See also: SETFLAG, GETFLAG
Example: CLRFLAG("#12,44",7,0)
[bookmark: _Toc118109385]6.4. COLOR - Set background box color for a number of fields
COLOR(fields par1, ColorRed par2, ColorGreen par3, ColorBlue par4)

par4 : Blue colorvalue (0-255)
Description: The background color for the given fields is set to the RGB value, it is the field box is filled with the given color.
Returnvalue: None
See also: COLORF
Example:
 COLOR("#3-4",255,0,0) /* Field 3 and 4 becomes a red box around
 COLOR("#3-4",-1) /* No background color for the fields
[bookmark: _Toc118109386]6.5. COLORF - Set forground text color for a number of fields
COLORF(fields par1, ColorRed par2, ColorGreen par3, ColorBlue par4)

par4 : Blue colorvalue (0-255)
Description: The forground color for the given fields is set to the RGB value, it is the field text is printed in the given color.
Returnvalue: None
See also: COLOR
Example: COLORF("#3-4",0,0,255) /* Field 3 and 4 are printed in blue
[bookmark: _Toc118109387]6.6. DIALOG - Function for additional input
Number DIALOG(Fields par1)
Parameters: Par1: Fields to show in the dialog
Description: The DIALOG function enables the user to pop up dialogboxes with a selected set of fields at any point of a report execution or in an IQ program for example by click on a field.
DIALOG("#1,7-8,le#3") defines a dialog with the given fields. The fields documentation is used as floating online help when the mouse cursor is moved over the leading text.
Together with a field you may state one of the following additional options:
 Lxxxx Line (dialog units)
 Pxxxx Position (dialog units)
 Hxxxx Height (dialog units)
 Wxxxx Width (dialog units)
 N No leading text
 N1 Add fieldnumber to leading text
 N2 Display leadingtext above field instead of left of field
 C COMBOBOX, Field check definitions shown as values
 O LISTBOX, Field check definitions shown as values
 :xx Skip to next column fieldline xx
 +xx Skip xx fieldlines down
.
Returnvalue: OK=0, CANCEL=1
See also: PARAMS
Example:
DIALOG("#1-3,11") /* Make a dialog with the given fields
[bookmark: _Toc118109388]6.7. GETFLAG- Get options for fields on screen (IQ)
number GETFLAG(fields par1, number par2, number par3)

Description: Each screenfield is associated with parameters (bits) defining the use. The SETFLAG function may be used to set these flags, CLRFLAG to clear them. The GETFLAG function may be used to read these flags.
Returnvalue: None
See also: SETFLAG, CLRFLAG
Example: GETFLAG("#12,44",7,0)
[bookmark: _Toc118109389]6.8. SETFLAG- Set options for fields on screen (IQ)
SETFLAG(fields par1, Bitflag par2, number par3)

Description: Each screenfield is associated with parameters (bits) defining the use. The SETFLAG function may be used to set these flags, CLRFLAG to clear them.
For the type parameter 0 only should normally be used.
Returnvalue: None
See also: GETFLAG, CLRFLAG
Example: SETFLAG("#12,44",7,0)
[bookmark: _Toc118109390]6.9. ZERO - Zero a number of fields
ZERO(fields par1)
Parameters: par1 : Field specification
Description: The given fields are zeroed. ZERO is working just like the LET function.
Returnvalue: None
See also: LET, CLEAR
Example: ZERO("3,19") /* Zeroes field 3 and field 19
[bookmark: _Toc118109391]7. Report control

The chapter describes functions to control the flow of report calculations/print in RAPGEN. The functions CHAIN, MESS and RETURN may also be used in IQ and DATAMASTER, the other functions is of no interest for screenprograms.
[bookmark: _Toc118109392]7.1. CHAIN - Start next report or another program (RAP)

number CHAIN()

par3 : Blank or Index,Totallevel,Companynumber
Description: CHAIN(7) starts report number 7 when this report is finished. The same start parameters as for this report will be used.
CHAIN(7,",310395,-,9999","1") sets Asofdate to 310395, Startkey to nothing, Stopkey to 9999 and lowest total level to 1. The other startparameters remains unchanged.
CHAIN(2007) starts report number 7 in subsystem 2.
CHAIN(-1,"c:/windows/write.exe") will start this (windows)program.
Each time CHAIN is executed a new runnumber is given starting from 1 and onwards. A report is started from the menu has runnumber 0. You can use #20=CHAIN() without parameters for CHAIN to get this runnumber and make a report run a number of times, eg. to print a number of copies.
CHAIN("c:/windows/write.exe") may be used in IQ/DATAMASTER programs to start another windows program.
Returnvalue: CHAIN() returns the actual runnumber.
See also: EXIT , CHAINR
Example:
 #20=CHAIN() /* This is report number 7.
 IF #20<3 CHAIN(7) /* The same report will be started 4 times.
[bookmark: _Toc118109393]7.1.1. CHAINR - Chain program or external command directly (RAP)
CHAINR(number par1, text par2, text par3)

par3 : Blank or Index,Totallevel,Companynumber
Description: The CHAIN command will always be placed LAST it is the next program will be started after this is finished.
Use CHAINR instead of CHAIN to interrupt this program and call-up another program immediately.
Returnvalue: None
See also: EXIT , CHAIN
Example: CHAINR(-1,"Notepad") /* Start notepad right now
[bookmark: _Toc118109394]7.1.2. CHAIN - Chain IQ program or external command (IQ)
CHAIN(text par1, text par2)

par2 : Optional key for record to display
Description: Activate a program number or a windows command string.
Returnvalue: None
See also: EXIT, ISACTIVE, WAIT
Example:
 CHAIN ("20") starts program 20.
 CHAIN ("+5") starts program 5 and activates this.
 CHAIN (">5") starts program 5, the current record will not be transmitted
 CHAIN ("$5") starts program 5, activates it and waits until this finishes.
 CHAIN ("+5",#1) starts program 5 which will read a record using #1

 #20="notepad"
 #20="command.com /C edit myfile.txt"
 CHAIN(#20) starts the specified windows program
 CHAIN("rapwin &") & as last character lets IQ continue
 while the newstarted program is running.
[bookmark: _Toc118109395]7.2. WAIT - Wait for program to finish (IQ)
WAIT(programno par1)
Parameters: par1 : Programnumber
Description: Wait for given program to finish (see EXIT). Calculations will continue when the program window is closed.
Returnvalue: None.
See also: CHAIN , EXIT
Example: WAIT(20) /* Do not continue before program ready
[bookmark: _Toc118109396]7.3. COMPILE - Compile a report (RAP)
COMPILE(number par1)

Prerequirements: It is only possible to use this function if a C compiler is installed and RAPGEN is bougth with licens for compiling.
Description: Instead of selecting 'Compile' from the 'Parameter' menu whenever the report is started after amendments this can be fixed in the calculations.
See also: INSTALL
Example: COMPILE /* The report will be compiled
[bookmark: _Toc118109397]7.4. EXIT - Exit the report (RAP)
number EXIT(number par1)

Description: The function terminates the report or the current pass (sort/print).
Returnvalue: None
See also: CHAIN , CHAINR , MESS
Example:
 READ(le) /* Read supplier data
 IF #OK THEN BEGIN /* terminate the report if supplier not found
 #12="Supplier ", le#1, " not found:"
 MESS(#12)
 EXIT(0)
 END
[bookmark: _Toc118109398]7.4.1. EXIT - Close IQ program or window (IQ)
EXIT(number par1)
Parameters: par1 : Program number to close
Description: EXIT(0) closes the current IQ program.
Returnvalue: None
See also: CHAIN , MESS, WAIT
Example:
 EXIT(20) closes program 20 if this is open, 1020 gives subsystem 1.
 EXIT(-1) closes the program selection window.
 EXIT(-2) closes the field selection window.
 EXIT(-3) closes and exits all IQ.
[bookmark: _Toc118109399]7.5. KEYS - External start/stop ranges (RAP)

number KEYS()

par2 : Eventual fixed name for .KEY definition file
Description: Using the KEYS function you can make a report to run with a number of start/stop ranges defined as lines in an external textfile. KEYS then replaces the entering of START/STOP keys by start of the report and may also replace the INDEX specification.
The keysfile can be created with any texteditor and may contain lines like:
 0001
 1000-1999
 0005-0099,0200,0155-0157
 2:205-271
 47/2000-2500
Each line can contain single keys or key ranges for print. 2: specifies use of index 2, 47/ states a calculation code which you can read in the calculations with #20=KEYS() and use for individual calculations.
Use of KEYS(0) produces one list containing all records specified in the keysfile, KEYS(1) produces one seperate list for each line in the keysfile and the ENDSUM routine may be used to get a total of these reports.
You may control a report with a keysfile also without placing a KEYS calculation. By start of any list, in START FROM, you may enter:
 (aa) Start with keysfile aa
 (1000,1100-1200,0004 Run over these key ranges
If path/extension is omitted for the keysfile this will be taken from the normal reportdirectory with the extension .KEY, eg. c:/rapfil/rap/aa.key
Returnvalue: KEYS() returns the calculation code (47 of 47/111-222) for the current range.
See also: ENDSUM, INDEX
Example:
 KEYS(0,"c:/mydir/enfil.min") /* The report is controlled from this file.
 #20=KEYS() /* A calculation code is read.
[bookmark: _Toc118109400]7.6. INDEX - Set index and start/stop value for report (RAP)
number INDEX(index par1, text par2, text par3)

par3 : value that the user normally enteres in the field Stop at
Description: The function is used to enforce an index and start/stop range for a report. If par1 >= 1 the index is set for the mainfile, eg. in which order the report must read the records. If par2 contains something the function will set the start range and which applies also for par3.
If the start/stop parameters have the first character as plus (+) the value is placed in front of any input done in the start/stop fields by start of the report.
INDEX(-2) locks the report to use index 2 but in descending order. The database driver must support descending read.
Returnvalue: Returns the index the mainfile will use.
See also: KEYS
Example: INDEX(2,"D","D") /* the reports mainfile is KU (currency file)
The example enforces index 2 for the report, so that the currency's are sorted accoreding to the currency name and not the currency code. Furthermore it only reads the records, where the currency name start with the letter "D".
INDEX(1,"+02","+02") /* Print 024711 upon entering 4711
[bookmark: _Toc118109401]7.7. LTOT - Lowest total level (RAP)
number LTOT(level par1)
Parameters: par1 : the lowest total level requested for the report
Description: If par1 >= 0 the function sets the lowest total level for the report. This level equals the one the user normally selects when starting a report.
Returnvalue: Returns the reports lowest total level.
See also: MTOT
Example: LTOT(1) /* print totals only, suppress all specification
[bookmark: _Toc118109402]7.8. MTOT - Highest total level (RAP)
number MTOT(level par1)
Parameters: par1 : the highest total level for the report
Description: The function enforces the highest total level for the report. If par1 equals 0, the report will not print any totals.
Returnvalue: Returns det highest total level.
See also: LTOT
Example: MTOT(1) /* A non-relevant grande total is being suppressed
[bookmark: _Toc118109403]7.9. MESS - Display message on screen
number MESS(text par1)
Parameters: par1 : the message to be displayed
Description: MESS displayes the text in a Windows messagebox. Dependent on the last character in the text the following symbol and buttons are used:

	
	text
	Symbol
	Buttons
	Defaultbutton

	
	text
	Info
	OK
	OK

	
	text?
	!
	OK, CANCEL
	CANCEL

	
	text??
	?
	YES, NO, CANCEL
	YES

	
	text!
	!
	YES, NO
	YES

	
	text!!
	STOP
	OK
	OK

	
	text?!
	STOP
	OK, CAN
	OK

Returnvalue: 0=OK or YES, 1=NO, -1=CANCEL
See also: EXIT
Example:
 #1=MESS("Stop the report !")
 IF #1=0 EXIT(0) /* exit the report
[bookmark: _Toc118109404]7.10. NOPAS - No password/username on this report (RAP)
NOPAS()
Parameters: None
Description: The function removes any password protection from the report. Normally an updating report automatically gets the password CARE. Using NOPAS() or PAS() this password may be removed or changed.
See also: PAS, UPDATE
Example:
 UPDATE(1)
 NOPAS() /* no password on this report
[bookmark: _Toc118109405]7.11. PAS - Set password/username (RAP)
number PAS(text par1)
Parameters: par1 : the requested password/username
Description: The function enforces a password/username for a report. This password is then required in order to start the report.
See also: NOPAS
Example: PAS("SWTOOLS") /* set password to SWTOOLS
[bookmark: _Toc118109406]7.12. PARAMS - Function for additional report start parameters (RAP)
PARAMS(Fields par1)
Parameters: Par1: Fields to show in start parameter dialog
Description: PARAMS("#1,7-8,le#3") is a variant of the dialog function where the input is done by start of the report not during report execution.
Use of PARAMS in a report will add a button <Extra parameters> to the startup screen which then activates the dialog.
Returnvalue: None.
See also: DIALOG
Example:
PARAMS("#1-3,11") /* Make a dialog with the given fields
[bookmark: _Toc118109407]7.13. RETURN - Return from calculations
number RETURN(number par1)
Parameters: par1 : the value to be returned
Description: The function is used to exit from the calculations performed for the current main file record. If no parameter is given or par1 equals 0, the report will print the defined print lines for the record. If the value is non-zero the record will not be processed any further or printed.
Returnvalue: None.
See also: GOSUB
Example: IF LE#6 < 1000 RETURN(1) /* no print if balance < 1000
[bookmark: _Toc118109408]7.14. SORTKEY - Inserting additional sortkey (RAP)
number SORTKEY(fileid par1)
Parameters: par1 : 0, -1 or fileid
Description: In some special cases a list should be sorted printing the same record multiple times on the output. For example an article list where the article is to be found with the normal supplier number and the alternative supplier number if any.
In such case you should sort using a workfield which then is calculated and an extra sortkey is released whenever the SORTKEY function is called.
Several files may also be merged using this function. The sortworkfile contains a number normally pointing to a record from the report mainfile. With SORTKEY(le) a record is inserted pointing to the file le and with #20=SORTKEY(-1) the filenumber of the file currently being the mainfile is returned which can be used to control futher calculations.
Returnvalue: Mainfilenumber, normally 1.
See also: MERGE
Example:
 #11=#9 /* Sortworkfield = Alternative supplier
 IF #11<>0 SORTKEY(0) /* Extra sortkey with this
 #11=#6 /* Normal sortkey with normal supplier
[bookmark: _Toc118109409]7.15. SORTWORK - Using a specific sortfile (RAP)
SORTWORK(number par1)
Parameters: par1 : Sortworkfile number
Description: During sort RAPGEN creates the workfiles: c:/tmp/SIN00000.000 and c:/tmp/SUD00000.000 where c:/tmp/ is the normal TMP directory. These sortfiles are not deleted after use as you by start of the next report by entering
START AT: SORT or SORTD
can avoid the sorttime and use the same sorting as for last run. If you intend to use these function SORTWORK(47) can ensure that the sortfiles are not overwritten by other lists as the filenames then becomes: c:/tmp/SIN00000.047 and c:/tmp/SUD00000.047.
Returnvalue: None.
See also:
Example: SORTWORK(47)
[bookmark: _Toc118109410]7.16. WHEN - When to perform calculations (RAP)
WHEN(number par1, number par2)

Description: The command WHEN is used to define when calculations may be performed, i.e. before/after sorting or accumulating totals.
[bookmark: _Toc118109411]8. Printer control

This section describes functions for report printer control.
[bookmark: _Toc118109412]8.1. COPIES- Number of print copies (RAP)
COPIES(number par1, Printer par2)

par2 : optional printer number
Description: COPIES(1) gives one additional copy of the print output. A maximum of 30 copies can be stated and the must be room for all Windows spoolfiles.
COPIES(1,7) produces one additional copy on the printer defined as no.7 in the printer setup. Note however that unexpected pageshift will occur if the copyprinter has a smaller form than the original.
Returnvalue: None.
See also: PRINTER
Example: COPIES(1) /* Print 2 times
[bookmark: _Toc118109413]8.2. PAGE - Change report layout page (RAP)
number PAGE(number par1)
Parameters: par1 : the requested report page
Description: A report normally uses page 0 when printing. This is the page that you normally use when defining a layout. A report may use different layout pages eg. to allow supplier letters to be printed in different languages (max. 9 layout pages). These pages are numbered from 0 to 9 and can be reached from the 'file' menu, 'page layout' when editing the form.
Returnvalue: Returns the page current selected as active print page.
See also: PRINT
Example:
 PAGE(le#5) /* select print page according to the suppliers language
 PRINT(1-10) /* print text
[bookmark: _Toc118109414]8.3. PRINT - Print lines from report layout (RAP)
PRINT(text par1)
Parameters: par1 : the lines to be printed
Description: The function is used to print lines from the report layout, or to set a print command that is performed for each page or print of total lines. The syntax is:

	
	Function
	Description

	
	PRINT(1-10)
	Print the lines 1 to 10

	
	PRINT(1,+2,2)
	Print line 1, then 2 blank lines and finally line 2

	
	PRINT(1,:60,2)
	Print line 1, goto line 60 and print line 2

	
	PRINT(:1003,1,3)
	Goto 3 lines before bottom and print line 1 and 3

	
	PRINT(1-10,:1,20)
	Print line 1 to 10, make form feed and print line 20

	
	PRINT(*H)
	The lines defined using H= is printed

The function is also used to set print commands controlling which lines to print in different situations:

	
	Function
	Description

	
	PRINT(H=1-4)
	When new page, print lines 1 to 4

	
	PRINT(L=8)
	The lines printed for each record in the main file is print line 8

	
	PRINT(T=10)
	The total line is line 10 (Applies also for grand total)

	
	PRINT(D=9)
	As heading for the Detaillines(READH) line 9 is printed

	
	PRINT(B=:1002,17)
	As Bottom on every page line 17 is printed

	
	PRINT(N=3,:1,1-4)
	Newpage 3 lines befor pageend, heading line 1-4

	
	PRINT(A=10)
	Line 10 is printed before a totalblock

	
	PRINT(C=11)
	Line 11 if printed after a totalblock

Note that a textfield may be used in the printcommand as
 #11="1-4,15"
 PRINT(#11)
PRINT(>2) switches to printer 2, see PRINTER.
Returnvalue: None.
See also: PAGE , PRINTER
Example: PRINT(:60,1-10) /* goto line 60 and print line 1 to 10
[bookmark: _Toc118109415]8.3.1. PRINT - Print output control (RAP.)
PRINT(text par1)
Parameters: par1 : option=value
Description: The PRINT command is expanded with the command syntax PRINT(xx=value yy), where xx,value and yy can be one of the following:

	
	Function
	Description

	xx=
	ml
	Left margin

	
	mr
	Right margin

	
	mt
	Top margin

	
	mb
	Bottom margin

	
	eh
	Empty line height

	
	ce
	Close report windows on exit

	
	fh
	Standard font height for all lines

	
	cd
	Close printer document and start new

	
	
	

	yy=
	cm
	Centimetre

	
	in
	Inches

	
	pt
	Points

	
	<none>
	Device pixels

[bookmark: _Toc118109416]8.3.2. PRINT(?= - Printer characteristics inquiry (RAP.)
PRINT(?=text par1)

Description: The PRINT command is also expanded with a query function in order to receive some information from the internal print handler.
The return value yy is reported in pixels except when xx is 5, 8, 9, 15 or 16.
[bookmark: _Toc118109417]8.4. PRINT(LAB= - Label function (RAP)
PRINT(LAB=Text par1, Text par2, Text par3, Text par4, Text par5, Text par6)

par6 : Copies
Description: The width and height of any label on the sheet can be given in centimetres or inches by using the following syntax:
 7cm equals 7 centimetres
 2in equals 2 inches
The below sample produces labels printed from left to right on a label sheet with 21 labels, 3 on each row, 7 rows, where each label has the width/height of 7 centimetres. Each label is printed in 2 copies.
Returnvalue: None.
See also: PRINT
Example:
FIRST
PRINT(LAB=1,3,7,7cm,7cm,2) /* Define label print
NORMAL
[bookmark: _Toc118109418]8.5. PRINTER- Printer selection (RAP.)
PRINTER(Printer par1)
Parameters: par1 : Printernumber
Description: This function is used in connection with the printer dialogue. In order to set the default printer for a report the following line can be added in the calculations:
Returnvalue: None.
See also: COPIES, PRINT
Example: PRINTER(7) /* default printer for this report is printer 7
[bookmark: _Toc118109419]8.5.1. PRINTER - Multiple printer output (RAP)
PRINTER(number par1, Printer par2)
Parameters: par1 : Printernumber par2 : PrinterID
Description: PRINTER(2,7) will open a secondary printer defined as printer number 7 in the printer setup. No output is printed on this until a
PRINT(>2)
is found in the calculations whereafter all print goes to this printer. PRINT(>1) switches back to the default printer.
Each printer has its own pagenumbers and may differ in paper size. A maximum of 30 concurrent printers or copies can be used.
Returnvalue: None.
See also: COPIES, PRINT
Example: PRINTER(2,7) /* Open secondary printer 7
[bookmark: _Toc118109420]8.6. PRTTOTAL - Manual control of total printout (RAP)
PRTTOTAL(Level par1)
Parameters: par1 : Total level number
Description: RAPGEN normally produces a subtotal when a part of the sortkey changes value. With the use of PRTTOTAL you can manually control all print of subtotals and instead print these when a field changes value.
Returnvalue: None.
See also: ENDSUM
Example:
 IF #7=1 PRTTOTAL(1) /* Print subtotal if field 7 is 1
 LAST
 PRTTOTAL(2) /* Print grandetotal last
[bookmark: _Toc118109421]8.7. SCRPRT - Recall screen print (IQ)
SCRPRT(Filename par1)
Parameters: Par1: Filename to show using the screen printer
Description: SCRPRT("filename") calls up the screen printer with the saved print from filename. This may for example be used in IQ by click on a field.
Returnvalue: None.
See also: PRINT
Example:
SCRPRT("c:/w/ab.cde") /* Show this file using the screen printer
[bookmark: _Toc118109422]9. Reading files

This chapter describes the READ function for reading one record from a secondary file and the START/NEXT/REPEAT functions for loop over a range of records.
The principles of handling of more files and there connections are decriped in RAPGEN Usermanual, section Using multiple files.
[bookmark: _Toc118109423]9.1. READ - Read record from file
number READ(file par1, index par2) ,connection par3

par3 : Optional connection if standard connection not present or suitable
Description: The function reads a record from a file.
READ(le) reads the file le using the standard connection defined in the Data Dictionary.
READ(le),#9 reads the file le using field 9 as key for index 1, nomatter if and how a standard connection is defined.
READ(va.02),#6 reads the file va using field 6 as key for index 2, nomatter if and how a standard connection is defined.
READ(le),"1",#9(3,4),#7 forms the key as a combination of the constant "1" and character 3-4 of field 9 followed by field 7.
READ(le.00),#6 reads the le file using the recordnumber (index 0) as given in field 6.
Returnvalue: 0 if record is read.
See also: START, NEXT, REPEAT, END , PRIOR, READR, READX
Example: READ(le) /* read the supplier
[bookmark: _Toc118109424]9.2. READH - Read record with optional print of heading
number READH(file par1, index par2) ,connection par3

par3 : Optional connection if standard connection not present or suitable
Description: The function reads a record from a file just as READ. If another record is read than last time READH was used, eg. when the supplier number changes, the heading given for READH will be printed.
Returnvalue: 0 if record is read.
See also: READ
Example: READH(le) /* read the supplier with optional heading
[bookmark: _Toc118109425]9.3. READR - Read record using recordnumber
number READR(file par1) ,connection par2

par2 : Optional connection if standard connection not present or suitable
Description: This function reads a record from a file using recordnumber as key. READR can be used only on database systems working with recordnumbers and are included only for compability with previus releases.
READ(le.00),#6 is the same as READR(le),#6
See also: READ , READX
[bookmark: _Toc118109426]9.4. READX - Read record using relative recordnumber
number READX(file par1) ,connection par2

par2 : Optional connection if standard connection not present or suitable
Description: This function reads a record from a file using relative recordnumber as key. READX can be used only on database systems working with recordnumbers and are included only for compability with previus releases.
READ(le.00),#6+N is the same as READX(le),#6
See also: READ , READR
[bookmark: _Toc118109427]9.5. START - Set index and range for a file
number START(file par1, index par2) ,connection par3

par3 : Optional connection if standard connection not present or suitable
Description: The function prepares reading with the NEXT function by setting the range of keys for this.
The standard file connection can be used or the key may be specified just as decriped for READ.
By START you will normally just specify a part of the key. The subsequent reading with NEXT will retreive all records where the first part of the record key matches with the keypart given in START.
Returnvalue: Returns 0 if range ok.
See also: READ, NEXT, REPEAT, END , PRIOR
Example:
 #47=0 /* Zero total field
 START(va) /* Start reading of articles
 NEXT(va) /* Read next article
 #47=#47+va#3 /* Totalize all articles
 REPEAT(va) /* Continue until end of range
[bookmark: _Toc118109428]9.6. NEXT - Get next record in range
number NEXT(file par1)
Parameters: par1 : shortname of the file
Description: The function is used in connection with START/NEXT/REPEAT loops. The functions START() and END() set the requested range for the loop. NEXT() then reads one record from the file. When the calculation REPEAT() is performed the function NEXT() will be performed once again until no more records exists in the given range.
Returnvalue: Returns 0 as long as records exists in the range.
See also: READ, START, REPEAT, END , PRIOR
Example:
 PRINT /* Take over complete print control
 PRINT(4,6,5) /* Print supplier heading
 START(va) /* Start reading of articles
 NEXT(va) /* Read next article
 PRINT(7) /* Print all articles
 REPEAT(va) /* Continue until end of range
[bookmark: _Toc118109429]9.7. REPEAT - Repeat reading NEXT
number REPEAT(file par1)
Parameters: par1 : shortname of the file
Description: The function is used in connection with START/NEXT/REPEAT loops. The functions START() and END() set the requested range for the loop. NEXT() then reads one record from the file. When the calculation REPEAT() is performed the function NEXT() will be performed once again until no more records exists in the given range.
Returnvalue: None
See also: START, NEXT , PRIOR
Example:
 #47=0 /* Zero total field
 START(va) /* Start reading of articles
 NEXT(va) /* Read next article
 #47=#47+va#3 /* Totalize all articles
 REPEAT(va) /* Continue until end of range
[bookmark: _Toc118109430]9.8. GETKEY - Get current key value
text GETKEY(fileid par1)
Parameters: par1 : Fileid
Description: #20=GETKEY(va) returns the index key for the last read record in the file va. The function is designed especially for database systems where the key not nessesary has to be stored as a field in the data record.
Returnvalue: The key value as text.
See also:
Example: #20 = GETKEY(va)
[bookmark: _Toc118109431]9.9. END - Set end range for a file after START
number END(file par1) ,connection par2

par2 : end range specification
Description: The START function defines the start key and the end key equal as the first part of the complete key. For example all postings with matching debitornumber is read.
Normally you do not have to use END, this is nessesary only if you need a special end range.
Returnvalue: Returns 0 if range ok.
See also: READ, START, REPEAT, NEXT , PRIOR
Example:
 UPDATE(1) /* Empty workfile before use
 START(xx),"0000" /* Start reading from the very first
 END(xx),"9999" /* And go until the last one
 NEXT(xx) /* Read next record
 DELETE(xx) /* Delete all records
 REPEAT(xx) /* Continue until file is empty
[bookmark: _Toc118109432]9.10. PRIOR - Get previus record in range
number PRIOR(file par1)
Parameters: par1 : shortname of the file
Description: PRIOR works just like NEXT but the previus record is retreived. Note that not all database interfaces support reading records in 'reverse' order.
Returnvalue: Returns 0 as long as records exists in the range.
See also: READ, START, REPEAT, NEXT , END
Example:
 PRINT /* Take over complete print control
 #47=0 /* Zero counter
 START(va) /* Start reading of articles
 PRIOR(va) /* Read prior article
 #47=#47+1 /* Count the articles
 IF #47=1 PRINT(4,6,5) /* Print supplier heading first time
 PRINT(7) /* Print all articles in reverse order
 REPEAT(va) /* Continue until end of range
 IF #47>0 PRINT(7) /* Print trailer if any articles
[bookmark: _Toc118109433]9.11. SPEED- Optimizing read strategi
SPEED()
Parameters: none
Description: The SPEED() function may be used to optimize the read strategi on a report as a record will not be read again when the same key is given but taken from memory. You should be carefull with this on updating reports.
Returnvalue: None.
See also: READ
Example: SPEED() /* Optimize the report read
[bookmark: _Toc118109434]10. Writing to files

This chapter describes the different ways of updating files. Use of these functions requires that the system is installed allowing update of files, that the used database has functions for this and that the user has write permission on the server.
Any program doing file update should be tested before use. It will be
the total responcibility of the user
that the update really has been tested and is working correctly.
[bookmark: _Toc118109435]10.1. UPDATE - Allow update of files
number UPDATE(number par1, fields par2)

par2 : Optional file/fields allowed to update.
Description: UPDATE(1) must be placed in an updating report before any of the write functions are used in order to activate these.
The update command has been extended with specification of fields to update.
 UPDATE(1,"va#6") /* causes the program to update field 6 in va only.
 UPDATE(1,"le#3-4") /* when more files are involved each file must be separate
 UPDATE(0) /* can now be used in DATAMASTER to switch all update off
Returnvalue: None.
See also: DELETE, INSERT, REWRITE, WRITE, NOPAS
Example:
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 #6=#6+10 /* Do the field modifications
 REWRITE(le) /* update the supplier in the file
[bookmark: _Toc118109436]10.2. REWRITE - Rewrite record in file
number REWRITE(file par1)
Parameters: par1 : shortname of the file
Description: The function updates a record in the given file which must have been read. Indexfields can be mofifyed only if the used database system supports this. The calculation UPDATE(1) must have been executed to activate this function.
Returnvalue: 0 if the record has been updated.
See also: DELETE, INSERT, WRITE, NOPAS, UPDATE
Example:
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 AFTER /* JUST AFTER SELECTIONS DONE
 #6=#6+10 /* Do the field modifications
 REWRITE(le) /* update the supplier in the file
[bookmark: _Toc118109437]10.3. INSERT - Insert new record in file
number INSERT(file par1)
Parameters: par1 : shortname of the file
Description: The function inserts a new record in a file. ALL fields in the file must be assigned a value prior to INSERT. The calculation UPDATE(1) must have been executed to activate this function.
Returnvalue: 0 if record is inserted.
See also: DELETE, REWRITE, WRITE, NOPAS, UPDATE, CLEAR, LET
Example:
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 CLEAR(le) /* zero all fields in supplier record
 LET("le#1,3=#7,17") /* fill the fields
 INSERT(le) /* insert new supplier in supplier file
[bookmark: _Toc118109438]10.4. DELETE - Delete a record in a file
number DELETE(file par1)
Parameters: par1 : the shortname of the file
Description: The function deletes a record in the requested file. The record must have been read before DELETE can be done. The calculation UPDATE(1) must have been executed to activate this function.
Returnvalue: 0 if record is deleted.
See also: INSERT, REWRITE, WRITE, NOPAS, UPDATE
Example:
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 AFTER /* JUST AFTER SELECTIONS DONE
 DELETE(va) /* the selected articles are removed
[bookmark: _Toc118109439]10.5. WRITE - Write a record to file
number WRITE(file par1)
Parameters: par1 : shortname of the file
Description: The function updates or inserts a record in det given file. If the last READ on this file has found a record the function issues a REWRITE, if no record was found by READ an INSERT is used. The calculation UPDATE(1) must have been executed to activate this function.
Returnvalue: 0 if record is updated/inserted.
See also: INSERT, REWRITE, DELETE, NOPAS, UPDATE
Example:
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 READ(le),#6 /* Read supplier for this article
 IF #OK THEN BEGIN /* If supplier not present
 le#1=#6 /* Set suppliernumber
 le#2="I made this" /* and name
 END
 le#6=le#6+#3 /* Update supplier fields
 WRITE(le) /* insert or update supplier record
[bookmark: _Toc118109440]11. Export / Import from external files

This chapter describes the functions for read/write of textfiles with data for transfer to other systems.
[bookmark: _Toc118109441]11.1. EXPORT - Export of data to a textfile
number EXPORT(fields par1, filename par2, text par3, text par4*6, text par5, text par6*6)

Description: EXPORT exports data to a textfile. The function can be used to transfer data between systems, to spreadsheets and wordprocessing systems.
The fields that are given in par1 has to be entered as text, eg. "#1-99" (in quotes).
The filename in par2 is defaulted to TMP if a directory is omitted, the default extension is .OUT and if the filename is completely omitted the report name as c:/tmp/DM1007.OUT for report number 7.
With par3 and par5 you can control the recordlength and lineseperators for the file.
par4 is normally used only with fixedlength files for transport to mainframe systems.
par6 consists of 6 characters used to control the layout of a commaseparated file. Note that " in this string must be written as the two characters \". As standard all alphanumeric fields are written as "xxxx", where the character " (quote) is converted to a ' (single quote). The numeric fields are written as 99.99, where . (dot) is the decimal point. All fields are separated with , (comma).
The export file may now be closed using EXPORT("CLOSE"). This may be useful if you want to CHAIN notepad to view the file.
Returnvalue: None.
See also: IMPORT
Example:
 AFTER /* AFTER selections
 EXPORT("LE#1-99","le.csv") /* all fields are exported (CSV)
 EXPORT("#1-6","le.csv","","","","--,\"'.") /* Same as above

This example will create the file le.csv with the following lines:
 "100","HUMBER LTD.","HUMBER STREET 223","4711 COPENHAGEN S"
 "102","AX & AX LTD.","SEA PARK ROAD 43","2100 COPENHAGEN",,25000
 "105","WEBB'S SUPPLIERS LTD.","EAST STREET 373","4711 COPENHAGEN F",,500

Example:
 EXPORT("#1-6","le.ssv","000001","","","--;. ,") /* all fields exported (SSV)

This example will create the file le.ssv with the following lines:
 SW-Tools
 100;HUMBER LTD.;HUMBER STREET 223;4711 COPENHAGEN S;;123,25

Example:
 EXPORT("#1-2,5-6","a","-80","1") /* fixed fieldlength and no crlf
[bookmark: _Toc118109442]11.2. IMPORT - Import data from textfile (RAP)
IMPORT(fields par1, filename par2, text par3, text par4*6, text par5, text par6*6)

Description: The function reads data from a textfil.
The fields that are given in par1 has to be entered in "" (quotes). It is possible to give simple calculations together with the field specification as IMPORT("#1-5,+6")

	
	Operator
	Function

	
	+
	Add up these fields

	
	-
	Subtract from these fields

	
	&
	Skip these fields

	
	=
	Set fields equal

	
	:xx
	Skip to position xx in the record

The physical filename given in par2 may contain a path, e.g. "c:\\export\\le.csv".
Returnvalue: None.
See also: EXPORT
Example:
 /* the reports mainfile is le (supplier file)
 UPDATE(1) /* the report updates
 NOPAS() /* no password
 IMPORT("#1-6","le.csv") /* read one record from textfile
 READ(LE),#1 /* Check if supplier LE present
 LE#6=LE#6+#6 /* Add amount read to old balance
 IF #OK LET("LE#1-6=#1-6") /* If new supplier move all fields
 WRITE(LE) /* Modify/Create LE supplier
Example:
 IMPORT("#1-6","le.ssv","","","","--;- -") /* import fra (SSV) tekstfil
[bookmark: _Toc118109443]11.2.1. IMPOCONT - Continuation of import (RAP)
IMPOCONT(fields par1)
Parameters: par1 : the fields to be set by read of data from the textfile
Description: IMPOCONT continues import of more fields from the same record and recordposition as last IMPORT reached. Used when a recordtype by start of the record may cause import of different fields.
See also: IMPORT, IMPONEXT, IMPOTHIS
[bookmark: _Toc118109444]11.2.2. IMPONEXT - Import of next record (RAP)
IMPONEXT(fields par1)
Parameters: par1 : the fields to be set by read of data from the textfile
Description: IMPONEXT reads a new record from the import file and imports the fields from here. Used when a field indicates that one or more records follows with related informations for this mainrecord.
See also: IMPORT, IMPOCONT, IMPOTHIS
[bookmark: _Toc118109445]11.2.3. IMPOTHIS - Reimport this record (RAP)
IMPOTHIS(fields par1)
Parameters: par1 : the fields to be set by read of data from the textfile
Description: IMPOTHIS imports the current record again. Used when a recordtype by start of the record may cause import of different fields.
See also: IMPORT, IMPOCONT, IMPONEXT
[bookmark: _Toc118109446]11.3. FTP - File Transfer Processor
number FTP(Number par1, Text par2)

Par2: FTP command
Description: The FTP function has been build in to enable advanced users to transfer files for example in a report based on a SSV file containing filenames. For a complete set of commands you should consult a FTP manual. Note that freefields may be used for the command and that the 32 bit version supports long filenames.
The example shows the transfer of a file from a Quattro system with the special command QUATTRO for transfer with headerblock and XQUAT to remove the additional FTP informations from the so transferred file.
Returnvalue: For OPEN: FTP Handle, all other: FTP error code, 0=OK
Example:
 #10=FTP(0,"open 200.0.0.9") /* Connect to Server
 #11=FTP(#10,"user cms mypas") /* Log in as user cms password mypas
 #11=FTP(#10,"binary") /* Switch on binary transfer
 #11=FTP(#10,"quattro") /* Switch on Quattro backup mode
 #11=FTP(#10,"get /X.BASIC/0/AFIL c:/mydir/myfil") /* Get the file
 if #11<>0 FTP(#10,"error") /* Display error message
 #11=FTP(#10,"xquat c:/mydir/myfil") /* Convert from Quattro
 #11=FTP(#10,"quit") /* Thats it
[bookmark: _Toc118109447]12. Multiple companies and merge of files

The functions descriped below are intended for use with multiple companies with separate tables/database systems and for merging different files with same record layout.
[bookmark: _Toc118109448]12.1. ACCESS- Check if file exists
number ACCESS(Filename par1)
Parameters: par1 : Filename
Description: Check if the given file is present, returns 0 if file is found.
Returnvalue: 0 if file is found.
See also: OPEN
Example: IF ACCESS("myfile.ssv")=0 MESS("Ok ? ")
[bookmark: _Toc118109449]12.2. COMNO - Get current company id
text COMNO(Fileid par1)
Parameters: par1 : Blank of fileid
Description: This function retreives the current company id of the given file, if no file id is given for the mainfile.
Returnvalue: Company id.
See also: OPCOM
Example: #1 = OPCOM() /* Get current company id, eg. "001"
[bookmark: _Toc118109450]12.3. ENDSUM - Additional grande total when using more mainfiles
ENDSUM()
Parameters: None
Description: On a report with more seperate lists caused by the use of either the MERGE or the OPCOM function with totals for each list you may obtain an additional total of all printed records by placing an ENDSUM() calculation line.
The system fields #CO and #CN will be printed as *** at the ENDSUM page.
Returnvalue: None
See also: KEYS, MERGE, OPCOM
Example: ENDSUM() /* Print additional end total
[bookmark: _Toc118109451]12.4. FILENAME - Current filename for an open file
text FILENAME(fileid par1)
Parameters: par1 : Fileid
Description: This function returns the filename for the file which are currently opened with the given fileid.
Returnvalue: Real filename.
See also: OPEN
Example: #1 = FILENAME(va) /* Gives "c:/rapfil/ssv/isa/va.ssv"
[bookmark: _Toc118109452]12.5. OPEN - Open a file with a specific name
number OPEN(fileid par1, Filename par2, Driver par3)

par3 : 0 or database interface number
Description: With the use of this function you may open a specific file instead of the one allready opened and associated with this fileid. The former opened file will be closed.
An error message is given if the filename is not present or the file cannot be opened for any other reason.
If par3 is given the file is forced open with this database interface type as defined in BASIS.SSV by database driver installation.
Returnvalue: 0=ok, <>0=error.
See also: ACCESS, FILENAME, MERGE, OPCOM
Example:
 FIRST
 OPEN(va,"c:/swtools/demo/va.ssv") /* Use this specific file

 OPEN(va,#50) /* Enter filename by start report
[bookmark: _Toc118109453]12.5.1. OPEN - Temporary close of files
OPEN(fileid par1, Constant par2)

par2 : "-"
Description: Files may be closed to allow CHAINED programs to access these NOTE that the MAIN file must not be closed in this way.
Returnvalue: 0=ok, <>0=error.
See also: FILENAME, MERGE, OPCOM
Example:
 OPEN("ku","-") /* will temporary close file to allow:
 CHAIN("command.com /c edit c:\\windows\\system\\ku.ssv")

 OPEN("ku","+") /* will reopen file again
[bookmark: _Toc118109454]12.6. MERGE - Merging of more mainfiles in one report (RAP)
number MERGE(fileid par1, Filename par2, Driver par3)

par3 : 0 or database interface number
Description: With the use of this function you can merge multiple files into one list. For the MERGE routine you may either give a fileid in par1 if the file is defined seperately or a filename in par2 as in OPEN. The involved files must have the same structure.
An error message is given if the filename is not present or the file cannot be opened for any other reason.
If par3 is given the file is forced open with this database interface type as defined in BASIS.SSV by database driver installation.
A report using MERGE will normally be sorted to gain the merge effect, eg. sorted on articlenumber. If MERGE is used without sorting you will first get a list from the normal mainfile followed by a list from each of the merged files. The ENDSUM function may be used to get a grande total of all printed records.
If MERGE is called without parameters at all a MERGENUMBER is return as 1 for the mainfile, 2 for the first merged file, 3 for the next and so on.

Without parameters: MERGENUMBER from 1 and onwards.
See also: ENDSUM, OPCOM, OPEN
Example:
 MERGE(0,"c:/swtools/demo/va.ssv") /* Merge this file
 MERGE(le) /* And the le file
 #12=MERGE() /* Get mergenumber 1,2 or 3
[bookmark: _Toc118109455]12.7. OPCOM - Open files in different companies

number OPCOM()

par3 : 0 or database interface number
Description: The OPCOM function enables you to access more companies on one report.
A report can be made to run once for each stated company by placing OPCOM("111,777-888") or OPCOM(#50) where field 50 is a startdata inputfield. Such a report can then be extended with a total for all companies using ENDSUM or can be sorted eg. to collect all informations of one article in all companies.
The system fields #CO and #CN may be used to print the company id and company name in the heading.
An article list defined on the file va can be made to collect informations of the article from another company also by placing OPCOM(VA,"555") folloved by READ(VA). By this va#8 contains the holding for the actual company whereas VA#8 is the holding for company 555.
A statistics report where each record in the statistics file contains a company number can open this company files by use of OPCOM(0,#47)
If par3 is given the file is forced open with this database interface type as defined in BASIS.SSV by database driver installation.
If OPCOM is used without parameters the current company number is returned.
From the COMPANY.SSV file the company names are read. If the company id's in par3 contains ranges the valid companies herein are taken from this file.

Without parameters: MERGENUMBER from 1 and onwards.
See also: COMNO, ENDSUM, MERGE, OPEN
Example:
 OPCOM("001,777-888") /* Run the report with these companies
 OPCOM("*") /* Run the report with all companies
 OPCOM(va,"123") /* Use the article file company 123
 OPCOM(0,"777") /* Company 777 for all other but mainfile
 OPCOM(-1,"888") /* Use company 888 for all files

 OPCOM(#50) /* Enter companies by start
[bookmark: _Toc118109456]13. IQ/DATAMASTER functions

The functions are designed for DATAMASTER and can not be used in reports. Some of the functions are usefull also in IQ which will then be indicated in the text.
[bookmark: _Toc118109457]13.1. DISABLE- Disable input for a program (IQ)
DISABLE(programno par1)
Parameters: par1 : Programnumber to disable.
Description: Disables all input for the given program number.
Returnvalue: None.
See also: ENABLE , FOCUS
Example: DISABLE(20)
[bookmark: _Toc118109458]13.2. DISP - Display of changed fields (IQ)
DISP(fields par1)
Parameters: par1 : "" or fields to redisplay
Description: DISP is to be used when you in a calculation for a field changes the value of other fields and these fields are shown on the screen. If DISP is not present you cannot be sure that the newly calculated value really is shown.
The DISP() command displaying all fields is extended to possibility of stating just selected fields as DISP("#1,4")
Returnvalue: None.
See also:
Example: DISP()
[bookmark: _Toc118109459]13.3. DOFUNCTION - Execute external function (IQ)
DOFUNCTION(Function par1, text par2, programno par3)

par3 : Optional programno
Description: DOFUNCTION sends the message <functionno> to the running IQ-Program or to the open <program>. A key may be passed to the READ functions.
The list of valid function numbers is found in the calculations listbox for 'Calculations by selection of function'.
Returnvalue: None.
See also: CHAIN, PLSNEXT, TRANSMIT
Example:
 DOFUNCTION(505,#1,20) /* ask program 20 to read a record using key #1
 DOFUNCTION(550) /* Zooms the current screen
[bookmark: _Toc118109460]13.4. ENABLE- Enable input for a program (IQ)
ENABLE(Programno par1)
Parameters: par1 : Program number to enable
Description: Enables all input for the given program number after DISABLE.
Returnvalue: None.
See also: DISABLE , FOCUS
Example: ENABLE(20) /* Enable program 20
[bookmark: _Toc118109461]13.5. FOCUS - Activate program (IQ)
FOCUS(Programno par1)
Parameters: par1 : Programnumber to activate.
Description: Activates input and sets focus to the given program number.
Returnvalue: None.
See also: DISABLE, ENABLE
Example: FOCUS(20) /* Program 20 becomes active
[bookmark: _Toc118109462]13.6. FUNC - Current update mode for a record (IQ)
number FUNC(fileid par1)
Parameters: par1 : Fileid
Description: Dependent of the users input DATAMASTER decides if update of a certain record is nessesary and how this should be performed. FUNC is then used in the write calculation to branch to the proper routine.
Returnvalue:

	
	Mode
	Function

	
	0
	No update nessesary

	
	1
	An existing record should be modified

	
	2
	A new record should be inserted

	
	3
	An existing record should be deleted

See also: SETUPD, ON
Example:
 ON FUNC(cu) GOSUB MAINWRT,MAININS,MAINDEL
 IF FUNC(va)!=3 LET #27=#27+va#4
[bookmark: _Toc118109463]13.7. GETINFO - Get additional program information (IQ/DM)
number GETINFO(number par1, text par2)

par2 : Field reference
Description: This function allows you to get some special information from an IQ/DM program. The type 0 and 1 will return the unique id of the window, which may be used by other functions to manipulate the window. A sample of this is present in the OLE manual.
When the type is 2 to 5 the function requires a field reference in par2. For example, to get the start column for article field number 7 par2 should equal "va#7". The coordinates of a field is here given in the actual size of the field defined in IQ/DM.
If you require the actual coordinates of a field according to the scale factor currently used, e.g. zoom in/out, use the type 6 to 9 instead.

Type 2-9 returns a field coordinate. The value can be held in a 9,T2 field format.
Example:
GETINFO(0) /* Get the IQ program window id
GETINFO(2,"va#7"); /* Get the start x coordinate of va field 7
[bookmark: _Toc118109464]13.8. HELP - Display box with help for field (IQ)
HELP(field par1)
Parameters: par1 : Fieldreference
Description: HELP("#31") displays a messagebox with help for the given field
See also: MESS
Example: HELP("#31")
[bookmark: _Toc118109465]13.9. ISACTIVE - Ask if program is active (IQ)
number ISACTIVE(Programno par1)
Parameters: par1 : Programno
Description: Test if <program> is active.
Returnvalue: Returns 1 if <program> is active, 0 else.
See also: CHAIN, EXIT, WAIT
Example: IF ISACTIVE(20)=0 CHAIN(20) /* Start program 20 if not done
[bookmark: _Toc118109466]13.10. KEYON - Switch key input field ON/OFF (IQ)
KEYON(number par1)

Description: KEYON(0) removes the key input field, (1) reactivates this.
Returnvalue: None.
See also:
Example: KEYON(0) /* Remove the key input field
[bookmark: _Toc118109467]13.11. LINE - Retrieve or set the current line number (IQ/DM)
number LINE(number par1)
Parameters: par1 : Type of information to get
Description: The function will retrieve or set the IQ/DM line number. The line number is the counter for lines defined in a program defined as va#1-6l or le#1-6/va#1-6.
If par1 equals 0 the function returns the line number of the currently active line.
if par1 equals -1 the function returns the number of lines defined for the programs. If the programs was defined as va#1-6l,t5 the return value would be 5
if par1 is greater than 0 the function sets the active line to par1.
Returnvalue: A line number/count or zero if the functions sets the line number.
Example:
 #20=LINE() /* Get current active line number
[bookmark: _Toc118109468]13.12. LOOP - Call a routine for all records in the linebuffer (IQ)
LOOP(label par1)
Parameters: par1 : Label (the routinename) to be called
Description: For each record read in a list program and for each transaction in a transaction program the internal linebuffer is filled with the read field values together with the result of the calculations for that line (non-global workfields).
In the writeroutine of such program LOOP is used to call a writeroutine for each single line. Also LOOP is used to recalculate SUM of all transaction lines.
Returnvalue: None.
See also: GOSUB, ON
Example:
 LOOP(MAIN) /* Writing the lines in a LIST-program
 LOOP(TRANS) /* Writing transaction lines
 LOOP(SUMIT) /* Recalculation of transaction SUM
 LOOP(TRANSDEF) /* Change of keyvalue for all transactions
[bookmark: _Toc118109469]13.13. MENUCH - Flip menu checked flag (IQ)
MENUCH(Menuno par1)
Parameters: par1 : Menunumbers
Description: Flip checkflag on the given menu numbers (see MENUS) and update the according internal flag for program control.
Returnvalue: None.
See also: MENUUPD, MENUS
Example: MENUCH("31-32") /* Flip talk and listen menu
[bookmark: _Toc118109470]13.14. MENUS - Menu control (IQ)
MENUS(Menuno par1)
Parameters: par1 : -xxx=Deactivate, +xxx=Activete the menupoints xxx

	
	Menunumber
	Function

	
	1/11
	Insert new record in mainfile/transactions

	
	2/12
	Amend a record in mainfile/transactions

	
	3/13
	Delete a record in mainfile/transactions

	
	4/14
	Superindex search on mainfile/transactions

	
	5/15
	Selections on mainfile/transactions

	
	6/16
	Superindex fielddefinition on mainfile/transactions

	
	20
	Search, list must match input

	
	21/22/23/24/25
	Transactions, Next/Previus/First/Last/Direction

	
	26
	Display key during search

	
	27
	Case sensitive search

	
	31/32
	Talk/Listen to other programs

	
	41/42/43/44
	Mainfile, Next/Previus/First/Last

	
	51/52/53
	Calculations/Amend form/Save program

	
	54/55
	Parameter menus

	
	61/62/63/64
	New program, Delete program, Print program, Start program

	
	100-149
	Index locked and index number

	
	999
	Activate everything

Description: The MENUS function may be used both in DATAMASTER and IQ to deactivate certain menupoints.
MENUS can also be activated all from start by calling IQ from Windows with the -m+xxx or -m-xxx parameter. Especially to amend the calculations for a program with the calculations deactivated you will have to select IQ as eg: C:\SWTOOLS\IQWIN -m999
Returnvalue: None.
See also: MENUCH, MENUUPD
Example: MENUS("-51-55") /* Deactivate amendments of this program
[bookmark: _Toc118109471]13.15. MENUUPD - Add/Control menu (IQ)
MENUUPD(Menuno par1, number par2, number par3)

par3 : Text
Description: Add / Control menu manually.
MENUUPD(1,2000,"My &Own menu") Adds function 2000 to menu number 1.
By selection of this new menupoint the user calculations labelled FU2000: in the function section will be performed.
Returnvalue: None.
See also: MENUCH, MENUS
Example: MENUUPD(1,2000,"My &Own menu") /* Add function 2000 to menu number 1.
[bookmark: _Toc118109472]13.16. NEXTFLD - Jump to input field (IQ)
NEXTFLD(field par1)
Parameters: par1 : Field number for next input
Description: NEXTFLD can be used to overwrite the fixed input sequence dependent on the calculations.
Together with the field specifications you may give program number or line number.
Returnvalue: None.
See also: NEXTFLDSEQ, SEQ
Example:
 IF #4<#3 NEXTFLD(#3)
 NEXTFLD("#10") /* sets next input field to field 10.
 NEXTFLD("#10.2") /* jumps to field 10 on line 2
 NEXTFLD("5.#10") /* jumps to program 5 field 10
[bookmark: _Toc118109473]13.17. NEXTFLDSEQ - Jump to input field in sequence (IQ)
NEXTFLDSEQ(number par1, number par2)

par2 : Field number
Description: Jump to a distinct field in one of the field sequences.
Returnvalue: None.
See also: SEQ , NEXTFLD
Example: NEXTFLDSEQ(2,1) /* Jump to the first field given in input sequence 2
[bookmark: _Toc118109474]13.18. OBJECTADDSTRING - Add string to object (IQ)
OBJECTADDSTRING(fields par1, text par2, text par3)

par3 : Text to use as index
Description: The function inserts a text in an object. The function result varies depending on the object type. In order to use the function correctly, please have the following rules in mind:

	
	Object
	Meaning

	
	BUTTON
	The function sets the text displayed for the button

	
	COMBOBOX
	The function adds a new element to the list

	
	EDITBOX
	The function set the text in the editbox. If the flag for multiple

	
	
	edit lines has been set the text will be added to the previous text

	
	LISTBOX
	The function adds a new element to the list

Parameter par3 is only used if the object type is COMBOBOX or LISTBOX. The parameter must contain the normal value of the field.
Returnvalue: None.
See also: OBJECTCLEAR
Example: OBJECTADDSTRING("va#7",gr#2,gr#1) /* Display name and use no. as index
[bookmark: _Toc118109475]13.19. OBJECTCLEAR - Clear contents of object (IQ)
OBJECTCLEAR(fields par1)
Parameters: par1 : Field on the form, e.g. va#7
Description: The function clears the contents of an object.
Returnvalue: None.
See also: OBJECTADDSTRING
Example:
 OBJECTCLEAR("va#7") /* clear all previous values
 START(gr),"" /* read all values from Article group table
 NEXT(gr)
 OBJECTADDSTRING("va#7",gr#2,gr#1) /* Display name and use no. as index
 REPEAT(gr)
[bookmark: _Toc118109476]13.20. OBJECTGETSTRING- Get index of an objects selected item (IQ/DM)
text OBJECTGETSTRING(field par1)
Parameters: par1 : Field on the form, e.g. va#7
Description: The function retrieves the normal value of the combobox/listbox field. It returns the value equal to the par3 used when calling OBJECTADDSTRING.
The use of this function will normally be by click on the combo/listbox field.
Returnvalue: The normal (index) value of the current selected item.
See also: OBJECTADDSTRING
Example:
 #20=OBJECTGETSTRING("va#6") /* Get current selected supplier number
[bookmark: _Toc118109477]13.21. PLSNEXT - Prepare and read mainfile (IQ)
PLSNEXT(number par1, text par2, number par3,)

Description: Prepare and perform read of mainfile according to the given mode. Used by the menus and by page down/up etc. If inputflag is set, key is used, otherwise read is next/prior/direct.
Returnvalue: None.
See also: DOFUNCTION, TRANSMIT
Example: PLSNEXT(0,#1,1) /* read the next record using #1 as key
[bookmark: _Toc118109478]13.22. SEQ - Change of input sequence (IQ)
SEQ(number par1, fields par2)

par2 : Fieldnumbers in the new sequence
Description: The parameterpage informations of field sequence is overwritten by use of this function.
Returnvalue: None.
See also: NEXTFLD, NEXTFLDSEQ
Example:
 SEQ(2,"va#2-3,5") /* Set the normal amendment sequence
 IF #7=1 SEQ(2,"va#4,3") /* Special for this article group
[bookmark: _Toc118109479]13.23. SETUPD - Mark a file on a line for updating (IQ)
SETUPD(fileid par1)
Parameters: par1 : Fileid for update
Description: When 'critical' fields in the main file are changed this may cause change of all transaction records. Normally modified transactions only will be written.
Returnvalue: None.
See also: LOOP
Example: SETUPD(va)
[bookmark: _Toc118109480]13.24. SHOW- Enable/Disable/Show/Hide a field (IQ/DM)
number SHOW(field par1, number par2)

3 = Hide field
Description: This function allows you to enable/disable a field or show/hide a field.
Returnvalue: None.
Example:
SHOW("va#7",1) /* Disable field va#7
[bookmark: _Toc118109481]13.25. SUPER - Prepare superindex search (IQ)
SUPER(fileid par1) , text par2

par2 : Key
Description: The SUPER function initialises the NEXT read for use of superindex
Returnvalue: None.
See also: NEXT, START
Example:
 SUPER(va),#21 /* NEXT uses superindex search for the text in #21
 NEXT(va) /* Must be follow to actually read the record
 SUPER(va) /* Superindex is switched off
 SUPER(va),"#1-3" /* Superindex fields is set to field 1-3
[bookmark: _Toc118109482]13.26. TRANSMIT- Update other IQ programs (IQ)
TRANSMIT(number par1, text par2, text par3)

par3 : Optional Connection
Description: Transmit the current records to one or more programs using the automatic connections or if given the connection stated.
 Progid="" Send to all other
 "20" Just update program 20 if active
 "le" Send to all programs using the file le as mainfile

 Connection = "" Use automatic connections between files
 "1,2P" Use field 1 and 2 packed as connection
 "va.01.6" Use va as transmitting file to the other program
 Read the other mainfile index 1 using field 6.
Returnvalue: None.
See also: PLSNEXT, DOFUNCTION
Example: TRANSMIT(0,"","") /* Update all other programs using auto connections
[bookmark: _Toc118109483]13.27. TRANSSEL- Define IQ transaction selections (IQ)
TRANSEL(text par1, number par2)

Description: Scan the given input if any and define transaction selections if input contains formulas as #15>0. Used by arrows in the keyfield
Returnvalue: None.
See also:
Example: TRANSSEL("#15>20",1) /* Define selection
[bookmark: _Toc118109484]14. SYSTEM functions

These functions are designed for use in special programs where you for example requires direct access to files / paths.
[bookmark: _Toc118109485]14.1. DEBUG- Switch on debug window (IQ)
DEBUG(number par1)

Description: DEBUG(1) will open a window which lists all calculated expressions and their program number/label when these are carried out.
The DEBUG window is closed when IQ is closed.
Returnvalue: None
See also: WIF, WIFS
Example: DEBUG(1) /* Switch on debug window
[bookmark: _Toc118109486]14.2. EXEC- Execute text as calculation line
EXEC(text par1, Programno par2)

par2 : (IQ/DM)program number
Description:
 #20="#2=17"
 EXEC(#20)
executes the textstring stored in field 20 as a calculation.
When using freefields in the EXEC function you must use the WW#nn references which you may obtain from a print of the program definitions.
In general the string passed to the EXEC function is not pretranslated and checked as normal calculation lines. This has especially importance when used in RAPGEN where the C-Syntax of the calculations must be followed. We strongly advise non-programmes to keep the use of EXEC in RAPGEN simple without involving function calls. Invalid function parameters may lead to general protection faults.
One point should be especially noticed for RAPGEN: #15=2 sets field 15 equal to 2 ALSO when used as IF #15=2 LET #16=3. You must double the equal sign in such a statement following the C-Syntax giving: IF (#15==2) LET #16=3
IQ: EXEC(#20,15) switches to the active program 15 and executes the given calculation.
Returnvalue: None
See also:
Example: EXEC(#20) /* Execute a calculation entered by start report
[bookmark: _Toc118109487]14.3. GETFLD- Set SY structure pointers (IQ)
GETFLD(text par1)
Parameters: par1 : Field specification
Description: This function sets system variables (SY#..) to point to the definition of the given field. The field definition may then be read/changed. Special and programmers use only.
Returnvalue: None
[bookmark: _Toc118109488]14.4. INSTALL- Aktivation of external functions
INSTALL(text par1, text par2, text par3, text par4)

par4 : Optional my function name
Description: Programmers knowing function definitions from other DLL's may now include these as IQ functions.
NOTE: Improper use of this function may cause system breakdown.
Returnvalue: None
See also:
Example:
 INSTALL("a.dll","b","3,[ss]")
 activates #20=B(#21) from a.dll, #20 and #21 being short variables

 INSTALL("some.dll","aname","3,[sCl]","FUNNY")
 activates #30=FUNNY(#31,#32) as function aname from some.dll
 return value #30 short, parameters #31 as char pointer, #32 as long.
[bookmark: _Toc118109489]14.5. SYSPAR - Get systemparameter
text SYSPAR(number par1)

Description: SYSPAR reads the given system parameter. Only the above mentioned values are usefull.
Returnvalue: The systemparameter.
See also: SYSPARSET
Example: #1 = SYSPAR(4) /* Get the current TMP path
[bookmark: _Toc118109490]14.6. SYSPARSET - Set value of a systemparameter
SYSPARSET(number par1, text par2)

par2 : New value of this system parameter
Description: SYSPARSET changes the value for the given system parameter.
Returnvalue: None.
See also: SYSPAR
Example: SYSPARSET(4,"c:/mytmp/") /* Set a new TMP directory
[bookmark: _Toc118109491]14.7. USERINFO - Get information about user
text USERINFO(number par1)

17=User defined
Description: This function gets the requested user information.
The number in Par1 refers to the fieldnumber in the system file US where you may define field 11 to 17 individually for each installation, just be careful if later upgrading the version of TRIO.
Returnvalue: String containing the user information.
Example:
 #11=USERINFO(6) /* Get the user first remark
[bookmark: _Toc118109492]14.8. WIF - Testprint (IQ)
WIF(text par1)
Parameters: par1 : Text to print
Description: WIF gives testprint without disturbing the screenlayout to the file c:/wif
Returnvalue: None
See also: WIFS, DEBUG
Example: WIF("Here I am") /* Output text
[bookmark: _Toc118109493]14.9. WIF- Testprint (RAP)
WIF(text par1 , text par2)

. Description: WIF gives testprint to the file c:/wif
Returnvalue: None
See also: WIFS, DEBUG
Example: WIF("Field equals %s.",#2) /* Testprint
[bookmark: _Toc118109494]14.10. WIFS- Testprint of fields (IQ)
WIFS(fields par1)
Parameters: par1 : Fields to print
Description: WIFS gives testprint of the given field values to the file c:/wif
Returnvalue: None
See also: WIF, DEBUG
Example: WIFS("va#1-3,le#2") /* Output field values
[bookmark: _Toc118109495]Index

Calculations and subfunctions
	

2
22/11/01 / 2022-09-01 008.384
A
ABS	32
AFTER	140;142;145
B
BASIC	3;58;151
C
CCODE	60;63;64
CHAIN	95;96;97;98;99;101;102;145;158;164;170
CHECK	61;62
Checkdigit	59
CHEX	61;62
CLEAR	84;87;94;141
COLOR	89;90
COMNO	154;160
Company	154;160
COMPANY	160
Compile	100
COMPILE	100
CONV	44;48;53;57
D
DATAMASTER	28;53;60;95;96;139;161;167;175
DATECALC	67;68;69;70;71;72;75;76;78;80;82
DELETE	135;139;140;141;142;143
DISP	163
E
ENDSUM	103;124;155;159;160
EXIT	96;97;98;99;101;102;107;170
EXPORT	145;146;147
F
FILENAME	27;156;157;158
FIND	46
FNA	67;68;69;70;71;72;73;75;76;78;80;82
FNB	67;68;69;70;72;75;76;78;80;82
FND	67;68;69;70;71;72;74;75;76;77;78;80;82
FNE	72
FNF	73
FNH	33;34;35;39
FNO	71;74;77
FNR	33;34;35;39;40
FNU	67;68;69;70;71;75;76;78;80;82
FNV	67;68;69;70;71;72;75;76;78;80;81;82
FNY	67;71;74;77
FRA	35;36
FUNC	167
G
GETKEY	134
I
IMPOCONT	148;149;150
IMPONEXT	148;149;150
IMPORT	145;147;148;149;150
IMPOTHIS	148;149;150
INDEX	103;104
INSERT	86;87;139;140;141;142;143
INT	36;39;41
IQ	28;85;88;91;92;93;95;96;98;99;102;125;161;162;163;164;165;166;167;168;169;170;171;172;173;174;175;176;177;178;179;180;181;182;183;184;185;186;187;188;190;191;192;193;197;199
K
KEYS	103;104;155
L
LEN	47;55
LOOP	173;184
LOWER	44;48;53;54;57
LTOT	105;106
M
MENUS	174;175;176
MERGE	112;155;157;158;159;160
MESS	95;101;102;107;153;169
MONTH	67;68;69;70;71;72;75;76;78;80;82
MTOT	105;106
N
NEXT	7;126;127;131;132;133;135;136;180;186
NEXTFLD	177;178;183
NOPAS	108;109;139;140;141;142;143;147
NORMAL	121
NUMBER	18;27;45;50;51
NUMS	18;50;51
O
OCR	61
OPCOM	154;155;157;158;159;160
OPEN	151;153;156;157;158;159;160
P
PACK	52;56
Packing	52
PAGE	117;118
PAS	108;109
POW	38;42
PRINT	6;8;10;12;17;117;118;119;120;121;122;123;125;132;136
PRIOR	127;131;132;133;135;136
PRTTOTAL	124
R
RAPDAY	82
RAPGEN	3;22;26;28;29;34;95;100;113;124;126;191
READH	118;128
READR	127;129;130
READX	127;129;130
REPEAT	7;126;127;131;132;133;135;136;180
RETURN	3;12;13;95;111
REWRITE	139;140;141;142;143
RUN	33;34;35;39
RUND	34;40
S
SEQ	177;178;183
SETUPD	167;184
SGN	32;37;41
SMAA	44;48;49;53;54;57
SOGE	49;54
SORTD	113
SORTKEY	112
SORTWORK	113
SPOFF	47;55
SQR	38;42
SYSPAR	194;195
SYSPARSET	194;195
T
TIME	79
U
UNPACK	52;56
UPDATE	86;87;108;135;139;140;141;142;143;147
UPPER	44;48;53;54;57
USING	18;45;50;58
V
VALCH	60;63;64
VALID	60;63;64
W
WDAY	67;68;69;70;71;72;75;76;78;80;82
WEEK	76;81
WORDS	49;53
WORKD	67;68;69;70;71;72;75;76;78;80;82
WRITE	139;140;141;142;143;147
Z
ZERO	84;87;94

image1.jpeg
SWr

SOFTWARE TOOLS

Ehg ISH Bser ea‘nua

Copyright © (1990-2022) SW-Tools ApS

Duevej 23

DK-2680 Solrgd Strand

Denmark

Phone: +45) 33 33 05 56
Mail: swtools@swtools.com

www: www.swtools.com

